Online Appendix for "Optimal Contingent Delegation"
 Tan Gan, Ju Hu and Xi Weng

Oct 5, 2022
This online appendix contains missing proofs. Section A provides the missing proof of Lemma 12. Section B provides the proof of Theorem 3 in Appendix D.1. Section C contains the proofs for Section 4.

Online Appendix A Missing Proof of Lemma 12

In Appendix B.3, we have proved Lemma 12 assuming that there exist desired h_{1} and h_{2} that satisfy parts (i) and (ii) of Lemma 12. The next lemma confirms the existence of such h_{1} and h_{2}.

Lemma A.1. For every $s_{1} \in\left[L_{1}, \bar{H}_{1}\right]$, there exists a unique $h_{2}\left(s_{1}\right) \in\left[c_{2}^{*}\left(s_{1}\right), d_{2}^{*}\left(s_{1}\right)\right]$ such that the following equation holds

$$
\begin{equation*}
s_{1}=\frac{h_{2}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)}{d_{2}^{*}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)} d_{1}^{*}\left(h_{2}\left(s_{1}\right)\right)+\frac{d_{2}^{*}\left(s_{1}\right)-h_{2}\left(s_{1}\right)}{d_{2}^{*}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)} c_{1}^{*}\left(h_{2}\left(s_{1}\right)\right) . \tag{A.1}
\end{equation*}
$$

Then, $h_{1} \equiv h_{2}^{-1}$ and h_{2} satisfy parts (i) and (ii) of Lemma 12.
Proof. For every $s_{1} \in\left[\underline{L}_{1}, \bar{H}_{1}\right]$ and $s_{2} \in\left[c_{2}^{*}\left(s_{1}\right), d_{2}^{*}\left(s_{1}\right)\right]$, define

$$
\begin{equation*}
g\left(s_{1}, s_{2}\right) \equiv \frac{s_{2}-c_{2}^{*}\left(s_{1}\right)}{d_{2}^{*}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)} d_{1}^{*}\left(s_{2}\right)+\frac{d_{2}^{*}\left(s_{1}\right)-s_{2}}{d_{2}^{*}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)} c_{1}^{*}\left(s_{2}\right) . \tag{A.2}
\end{equation*}
$$

It is well defined by condition U and continuous by Lemma 2 . We divide the remaining proof into several small steps.

Step 1: For every $s_{1}, g\left(s_{1}, \cdot\right)$ is strictly increasing.
Consider $c_{2}^{*}\left(s_{1}\right) \leq s_{2}<s_{2}^{\prime} \leq d_{2}^{*}\left(s_{1}\right)$. We have

$$
\begin{aligned}
g\left(s_{1}, s_{2}\right) & \leq \frac{s_{2}-c_{2}^{*}\left(s_{1}\right)}{d_{2}^{*}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)} d_{1}^{*}\left(s_{2}^{\prime}\right)+\frac{d_{2}^{*}\left(s_{1}\right)-s_{2}}{d_{2}^{*}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)} c_{1}^{*}\left(s_{2}^{\prime}\right) \\
& =\frac{s_{2}-c_{2}^{*}\left(s_{1}\right)}{d_{2}^{*}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)}\left(d_{1}^{*}\left(s_{2}^{\prime}\right)-c_{1}^{*}\left(s_{2}^{\prime}\right)\right)+c_{1}^{*}\left(s_{2}^{\prime}\right) \\
& <\frac{s_{2}^{\prime}-c_{2}^{*}\left(s_{1}\right)}{d_{2}^{*}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)}\left(d_{1}^{*}\left(s_{2}^{\prime}\right)-c_{1}^{*}\left(s_{2}^{\prime}\right)\right)+c_{1}^{*}\left(s_{2}^{\prime}\right) \\
& =g\left(s_{1}, s_{2}^{\prime}\right)
\end{aligned}
$$

where the first inequality comes from monotonicity of c_{1}^{*} and d_{1}^{*} by Lemma 2. The second inequality comes from $d_{1}^{*}\left(s_{2}^{\prime}\right)>c_{1}^{*}\left(s_{2}^{\prime}\right)$ by condition U .

Step 2: If $s_{1}=\underline{L}_{1}$, the unique $h_{2}\left(s_{1}\right) \in\left[c_{2}^{*}\left(\underline{L}_{1}\right), d_{2}^{*}\left(\underline{L}_{1}\right)\right]$ that satisfies $g\left(s_{1}, h_{2}\left(s_{1}\right)\right)=s_{1}$ is $h_{2}\left(s_{1}\right)=\underline{L}_{2}$.

Because $c_{2}^{*}\left(\underline{L}_{1}\right)=\underline{L}_{2}$ and $c_{1}^{*}\left(\underline{L}_{2}\right)=\underline{L}_{1}$, it is straightforward to see $g\left(\underline{L}_{1}, \underline{L}_{2}\right)=\underline{L}_{1}$. Uniqueness comes from the previous step.

Step 3: If $s_{1}=\bar{H}_{1}$, the unique $h_{2}\left(s_{1}\right) \in\left[c_{2}^{*}\left(\bar{H}_{1}\right), d_{2}^{*}\left(\bar{H}_{1}\right)\right]$ that satisfies $g\left(s_{1}, h_{2}\left(s_{1}\right)\right)=$ s_{1} is $h_{2}\left(s_{1}\right)=\bar{H}_{2}$.

The proof is similar to the previous one.
Step 4: If $s_{1} \in\left(\underline{L}_{1}, \bar{H}_{1}\right)$, then there exists a unique $h_{2}\left(s_{1}\right) \in\left(c_{2}^{*}\left(s_{1}\right), d_{2}^{*}\left(s_{1}\right)\right)$ such that $g\left(s_{1}, h_{2}\left(s_{1}\right)\right)=s_{1}$.

It is easy to see $g\left(s_{1}, c_{2}^{*}\left(s_{1}\right)\right)=c_{1}^{*}\left(c_{2}^{*}\left(s_{1}\right)\right)$. Because $s_{1}>\underline{L}_{1}$, we then know $g\left(s_{1}, c_{2}^{*}\left(s_{1}\right)\right)<s_{1}$ by Lemma 9. Similarly, because $g\left(s_{1}, d_{2}^{*}\left(s_{1}\right)\right)=d_{1}^{*}\left(d_{2}^{*}\left(s_{1}\right)\right)$ and $s_{1}<\bar{H}_{1}$, we know $g\left(s_{1}, d_{2}^{*}\left(s_{1}\right)\right)>s_{1}$ by Lemma 9 again. Thus, by Step 1 , we know there exists a unique $h_{2}\left(s_{1}\right) \in\left(c_{2}^{*}\left(s_{1}\right), d_{2}^{*}\left(s_{1}\right)\right)$ such that $g\left(s_{1}, h_{2}\left(s_{1}\right)\right)=s_{1}$.

Step 5: $h_{2}:\left[\underline{L}_{1}, \bar{H}_{1}\right] \rightarrow\left[\underline{L}_{2}, \bar{H}_{2}\right]$ is continuous and surjective.
Let $\left\{s_{1}^{n}\right\}_{n \geq 1} \subset\left[\underline{L}_{1}, \bar{H}_{1}\right]$ be a sequence converging to $s_{1} \in\left[\underline{L}_{1}, \bar{H}_{1}\right]$. Because $\left\{h_{2}\left(s_{1}^{n}\right)\right\}_{n \geq 1} \subset\left[\underline{L}_{2}, \bar{H}_{2}\right]$, it has a convergent subsequence $\left\{h_{2}\left(s_{1}^{n_{k}}\right)\right\}_{k \geq 1}$. Let $s_{2} \equiv$ $\lim _{k \rightarrow \infty} h_{2}\left(s_{1}^{n_{k}}\right) \in\left[c_{2}^{*}\left(s_{1}\right), d_{2}^{*}\left(s_{1}\right)\right]$. Because $g\left(s_{1}^{n_{k}}, h_{2}\left(s_{1}^{n_{k}}\right)\right)=s_{1}^{n_{k}}$ for all $k \geq 1$ and g is continuous, we know $g\left(s_{1}, s_{2}\right)=s_{1}$. By Steps 2-4, we know $s_{2}=h_{2}\left(s_{1}\right)$. This proves the continuity of h_{2}. Because $h_{2}\left(\underline{L}_{1}\right)=\underline{L}_{2}$ and $h_{2}\left(\bar{H}_{1}\right)=\bar{H}_{2}$ by Steps 2 and 3, we know h_{2} is surjective since it is continuous.

Step 6: $h_{2}\left(\underline{L}_{1}\right)<h_{2}\left(s_{1}\right)<h_{2}\left(\bar{H}_{1}\right)$ for all $s_{1} \in\left(\underline{L}_{1}, \bar{H}_{1}\right)$.
For all $s_{1} \in\left(\underline{L}_{1}, \bar{H}_{1}\right)$, we have

$$
h_{2}\left(\underline{L}_{1}\right)=\underline{L}_{2}=c_{2}^{*}\left(\underline{L}_{1}\right) \leq c_{2}^{*}\left(s_{1}\right)<h_{2}\left(s_{1}\right)<d_{2}^{*}\left(s_{1}\right) \leq d_{2}^{*}\left(\bar{H}_{1}\right)=\bar{H}_{2}=h_{2}\left(\bar{H}_{1}\right)
$$

where the first and last equalities come from Steps 2 and 3. The two weak inequalities come from monotonicity of c_{2}^{*} and d_{2}^{*}. The two strict inequalities come from Step 4.

Step 7: $h_{2}:\left[\underline{L}_{1}, \bar{H}_{1}\right] \rightarrow\left[\underline{L}_{2}, \bar{H}_{2}\right]$ is strictly increasing.
We first argue that h_{2} is injective. Consider $\underline{L}_{1} \leq s_{1}<s_{1}^{\prime} \leq \bar{H}_{1}$. Suppose, by contradiction, $h_{2}\left(s_{1}\right)=h_{2}\left(s_{1}^{\prime}\right) \equiv s_{2}$. By Step 6, we know $\underline{L}_{1}<s_{1}<s_{1}^{\prime}<\bar{H}_{1}$. Thus, $c_{2}^{*}\left(s_{1}\right)<s_{2}<d_{2}^{*}\left(s_{1}\right)$ and $c_{2}^{*}\left(s_{1}^{\prime}\right)<s_{2}<d_{2}^{*}\left(s_{1}^{\prime}\right)$ by Step 4.

Because $g\left(s_{1}, s_{2}\right)=s_{1}<s_{1}^{\prime}=g\left(s_{1}^{\prime}, s_{2}\right)$ and $d_{1}^{*}\left(s_{2}\right)>c_{1}^{*}\left(s_{2}\right)$, we can directly see from (A.2) that

$$
\frac{s_{2}-c_{2}^{*}\left(s_{1}\right)}{d_{2}^{*}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)}<\frac{s_{2}-c_{2}^{*}\left(s_{1}^{\prime}\right)}{d_{2}^{*}\left(s_{1}^{\prime}\right)-c_{2}^{*}\left(s_{1}^{\prime}\right)},
$$

which implies

$$
\frac{d_{2}^{*}\left(s_{1}\right)-s_{2}}{s_{2}-c_{2}^{*}\left(s_{1}\right)}>\frac{d_{2}^{*}\left(s_{1}^{\prime}\right)-s_{2}}{s_{2}-c_{2}^{*}\left(s_{1}^{\prime}\right)}
$$

But this is impossible, since $0<s_{2}-c_{2}^{*}\left(s_{1}^{\prime}\right) \leq s_{2}-c_{2}^{*}\left(s_{1}^{\prime}\right)$ and $0<d_{2}^{*}\left(s_{1}\right)-s_{2} \leq$ $d_{2}^{*}\left(s_{1}^{\prime}\right)-s_{2}$. Therefore, h_{2} is injective.

Because h_{2} is continuous by Step 5 , we now know h_{2} is strictly monotone. Because $h_{2}\left(\underline{L}_{1}\right)<h_{2}\left(\bar{H}_{1}\right)$, we know h_{2} is strictly increasing.

The above Steps 2-4 and 7 together guarantee that h_{2} satisfies parts (i) and (ii) in Lemma 12. These steps, together with Step 5, guarantee that $h_{1} \equiv h_{2}^{-1}:\left[\underline{L}_{2}, \bar{H}_{2}\right] \rightarrow$ [$\left.\underline{L}_{1}, \bar{H}_{1}\right]$ is well defined and satisfies part (i).

Step 8: For all $s_{2} \in\left(\underline{L}_{2}, \bar{H}_{2}\right), h_{1}\left(s_{1}\right) \in\left(c_{1}^{*}\left(s_{2}\right), d_{1}^{*}\left(s_{2}\right)\right)$. That is, h_{1} satisfies part (ii).
Let $s_{1} \equiv h_{1}\left(s_{2}\right) \in\left(\underline{L}_{1}, \bar{H}_{1}\right)$. Then, (A.1) can be written as

$$
h_{1}\left(s_{2}\right)=\frac{h_{2}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)}{d_{2}^{*}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)} d_{1}^{*}\left(s_{2}\right)+\frac{d_{2}^{*}\left(s_{1}\right)-h_{2}\left(s_{1}\right)}{d_{2}^{*}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)} c_{1}^{*}\left(s_{2}\right) .
$$

Because $\frac{h_{2}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)}{d_{2}^{*}\left(s_{1}\right)-c_{2}^{*}\left(s_{1}\right)} \in(0,1)$ by Step 4 , we immediately know $h_{1}\left(s_{2}\right) \in\left(c_{1}^{*}\left(s_{2}\right), d_{1}^{*}\left(s_{2}\right)\right)$. This completes the proof.

Online Appendix B Proof of Theorem 3

Proof of Theorem 3. For notational simplicity, we write $a_{i}^{*}\left(s_{i}, s_{-i}\right)$ for $\sigma_{i}^{\phi}\left(s_{i}, s_{-i}\right)$. The goal is to show that $a^{*} \equiv\left(a_{1}^{*}, a_{2}^{*}\right)$ solves the following problem, which is equivalent to (1) by the standard envelope theorem argument:

$$
\begin{equation*}
\max _{\left(a_{1}, a_{2}\right)} \iint\left(u_{0}\left(a_{1}\left(s_{1}, s_{2}\right), a_{2}\left(s_{1}, s_{2}\right)\right)+\sum_{i} u_{i}\left(a_{i}\left(s_{i}, s_{-i}\right), s_{i}\right)\right) f_{1}\left(s_{1}\right) f_{2}\left(s_{2}\right) \mathrm{d} s_{1} \mathrm{~d} s_{2}, \tag{B.1}
\end{equation*}
$$

subject to:
$s_{i} a_{i}\left(s_{i}, s_{-i}\right)-\frac{a_{i}\left(s_{i}, s_{-i}\right)^{2}}{2}=\int_{0}^{s_{i}} a_{i}\left(\tilde{s}_{i}, s_{-i}\right) \mathrm{d} \tilde{s}_{i}-\frac{a_{i}\left(0, s_{-i}\right)^{2}}{2}, \forall i, s_{i}, s_{-i}$,
$a_{i}\left(s_{i}, s_{-i}\right)$ is increasing in $s_{i}, \forall i, s_{-i}$.

Define the following (cumulative) Lagrange multiplier:

$$
\Lambda_{i}\left(s_{i}, s_{-i}\right)= \begin{cases}f_{-i}\left(s_{-i}\right)\left(1-\kappa_{i} F_{i}\left(s_{i}\right)\right), & s_{i} \in\left[0, \underline{\phi}_{i}\left(s_{-i}\right)\right] \\ f_{-i}\left(s_{-i}\right)\left(1-\frac{\partial w_{i}}{\partial a_{i}}\left(s_{i}, s_{i}, s_{-i}\right) f_{i}\left(s_{i}\right)\right), & s_{i} \in\left(\underline{\phi}_{i}\left(s_{-i}\right), \bar{\phi}_{i}\left(s_{-i}\right)\right), \\ f_{-i}\left(s_{-i}\right)\left(1+\kappa_{i}\left(1-F_{i}\left(s_{i}\right)\right)\right), & s_{i} \in\left[\bar{\phi}_{i}\left(s_{-i}\right), 1\right]\end{cases}
$$

We argue that, for every s_{-i}, the following function is increasing in s_{i} :

$$
\begin{aligned}
& \Lambda_{i}\left(s_{i}, s_{-i}\right)+\kappa_{i} f_{-i}\left(s_{-i}\right) F_{i}\left(s_{i}\right) \\
= & \begin{cases}f_{-i}\left(s_{-i}\right), & s_{i} \in\left[0, \underline{\phi}_{i}\left(s_{-i}\right)\right] \\
f_{-i}\left(s_{-i}\right)\left(1+\kappa_{i} F_{i}\left(s_{i}\right)-\frac{\partial w_{i}}{\partial a_{i}}\left(s_{i}, s_{i}, s_{-i}\right) f_{i}\left(s_{i}\right)\right), & s_{i} \in\left(\underline{\phi}_{i}\left(s_{-i}\right), \bar{\phi}_{i}\left(s_{-i}\right)\right), \\
f_{-i}\left(s_{-i}\right)\left(1+\kappa_{i}\right), & s_{i} \in\left[\bar{\phi}_{i}\left(s_{-i}\right), 1\right]\end{cases}
\end{aligned}
$$

Clearly, it is increasing over $\left[0, \phi_{i}\left(s_{-i}\right)\right]$ and $\left[\bar{\phi}_{i}\left(s_{-i}\right), 1\right]$. By condition C1, it is also increasing over $\left[\phi_{i}\left(s_{-i}\right), \bar{\phi}_{i}\left(s_{-i}\right)\right]$. Hence, to show that it is increasing over $[0,1]$, it suffices to verify the following two inequalities:

$$
\begin{align*}
\kappa_{i} F_{i}\left(\underline{\phi}_{i}\left(s_{-i}\right)\right) & \geq \frac{\partial w_{i}}{\partial a_{i}}\left(\underline{\phi}_{i}\left(s_{-i}\right), \underline{\phi}_{i}\left(s_{-i}\right), s_{-i}\right) f_{i}\left(\underline{\phi}_{i}\left(s_{-i}\right)\right), \tag{B.2}\\
\kappa_{i}\left(1-F_{i}\left(\bar{\phi}_{i}\left(s_{-i}\right)\right)\right) & \geq-\frac{\partial w_{i}}{\partial a_{i}}\left(\bar{\phi}_{i}\left(s_{-i}\right), \bar{\phi}_{i}\left(s_{-i}\right), s_{-i}\right) f_{i}\left(\bar{\phi}_{i}\left(s_{-i}\right)\right) . \tag{B.3}
\end{align*}
$$

If $\underline{\phi}_{i}\left(s_{-i}\right)=0$, (B.2) is directly implied by condition $\mathrm{C} 2^{\prime}$. If $\underline{\phi}_{i}\left(s_{-i}\right)>0$, we know from condition C 2 that
$g\left(s_{i}\right)=\left(s_{i}-\underline{\phi}_{i}\left(s_{-i}\right)\right) \kappa_{i} F_{i}\left(s_{i}\right)-\int_{0}^{s_{i}} \frac{\partial w_{i}}{\partial a_{i}}\left(\underline{\phi}_{i}\left(s_{-i}\right), \tilde{s}_{i}, s_{-i}\right) f_{i}\left(\tilde{s}_{i}\right) \mathrm{d} \tilde{s}_{i} \leq 0, \forall s_{i} \in\left[0, \underline{\phi}_{i}\left(s_{-i}\right)\right]$,
with equality at $\underline{\phi}_{i}\left(s_{-i}\right)$. This implies that $g^{\prime}\left(\phi_{i}\left(s_{-i}\right)\right) \geq 0$. Equivalently, (B.2) holds. Using conditions C3 and C3', we can similarly verify that (B.3) also holds.

For every s_{-i}, being the difference of two increasing functions, $\Lambda_{i}\left(s_{i}, s_{-i}\right)$ as a function of s_{i} has bounded variation. As a result, it induces a well-defined (signed) measure $\Lambda_{i}\left(\mathrm{~d} s_{i}, s_{-i}\right)$ over $[0,1]$. Let

$$
\Phi \equiv\left\{\text { direct mechanism }\left(a_{1}, a_{2}\right) \mid a_{i}\left(s_{i}, s_{-i}\right) \text { is increasing in } s_{i}\right\} .
$$

Define the Lagrangian function $\mathcal{L}: \Phi \rightarrow \mathbb{R}$ as, for every $a \in \Phi$,

$$
\begin{aligned}
& \mathcal{L}(a) \equiv \iint\left(u_{0}\left(a_{1}\left(s_{1}, s_{2}\right), a_{2}\left(s_{1}, s_{2}\right)\right)+\sum_{i} u_{i}\left(a_{i}\left(s_{i}, s_{-i}\right), s_{i}\right)\right) f_{1}\left(s_{1}\right) f_{2}\left(s_{2}\right) \mathrm{d} s_{1} \mathrm{~d} s_{2} \\
& -\sum_{i} \iint\left(\int_{0}^{s_{i}} a_{i}\left(\tilde{s}_{i}, s_{-i}\right) \mathrm{d} \tilde{s}_{i}-\frac{a_{i}\left(0, s_{-i}\right)^{2}}{2}-s_{i} a_{i}\left(s_{i}, s_{-i}\right)+\frac{a_{i}\left(s_{i}, s_{-i}\right)^{2}}{2}\right) \Lambda_{i}\left(\mathrm{~d} s_{i}, s_{-i}\right) \mathrm{d} s_{-i}
\end{aligned}
$$

In what follows, we proceed to show that a^{*} solves

$$
\begin{equation*}
\max _{a \in \Phi} \mathcal{L}(a) \tag{B.4}
\end{equation*}
$$

which is sufficient for a^{*} to be a solution to (B.1).
Step 1: \mathcal{L} is concave.
Note that for all s_{-i},

$$
\begin{aligned}
\int_{0}^{1}\left(\int_{0}^{s_{i}} a_{i}\left(\tilde{s}_{i}, s_{-i}\right) \mathrm{d} \tilde{s}_{i}\right) \Lambda_{i}\left(\mathrm{~d} s_{i}, s_{-i}\right) & =\int_{0}^{1} a_{i}\left(s_{i}, s_{-i}\right)\left(\Lambda_{i}\left(1, s_{-i}\right)-\Lambda_{i}\left(s_{i}, s_{-i}\right)\right) \mathrm{d} s_{i} \\
\int_{0}^{1}-\frac{a_{i}\left(0, s_{-i}\right)^{2}}{2} \Lambda_{i}\left(\mathrm{~d} s_{i}, s_{-i}\right) & =-\frac{a_{i}\left(0, s_{-i}\right)^{2}}{2}\left(\Lambda_{i}\left(1, s_{-i}\right)-\Lambda_{i}\left(0, s_{-i}\right)\right)=0
\end{aligned}
$$

where the last equality comes from the construction of Λ_{i}. Hence, $\mathcal{L}(a)$ can be rewritten as

$$
\begin{align*}
\mathcal{L}(a)= & \iint\left(u_{0}(a(s)) f_{1}\left(s_{1}\right) f_{2}\left(s_{2}\right)-\sum_{i} a_{i}(s)\left(\Lambda_{i}\left(1, s_{-i}\right)-\Lambda_{i}\left(s_{i}, s_{-i}\right)\right)\right) \mathrm{d} s_{1} \mathrm{~d} s_{2} \\
& +\sum_{i} \int_{0}^{1} \int_{0}^{1} u_{i}\left(a_{i}(s), s_{i}\right) f_{1}\left(s_{1}\right) f_{2}\left(s_{2}\right) \mathrm{d} s_{1} \mathrm{~d} s_{2} \\
& +\sum_{i} \int_{0}^{1} \int_{0}^{1}\left(s_{i} a_{i}(s)-\frac{a_{i}(s)^{2}}{2}\right) \Lambda_{i}\left(\mathrm{~d} s_{i}, s_{-i}\right) \mathrm{d} s_{-i} \\
= & \iint \underbrace{\left(u_{0}(a(s)) f_{1}\left(s_{1}\right) f_{2}\left(s_{2}\right)-\sum_{i} a_{i}(s)\left(\Lambda_{i}\left(1, s_{-i}\right)-\Lambda_{i}\left(s_{i}, s_{-i}\right)\right)\right)}_{A(a, s)} \mathrm{d} s_{1} \mathrm{~d} s_{2} \tag{B.5}\\
& +\sum_{i} \int_{0}^{1} \int_{0}^{1} \underbrace{\left(u_{i}\left(a_{i}(s), s_{i}\right)-\kappa_{i} s_{i} a_{i}(s)+\kappa_{i} \frac{a_{i}(s)^{2}}{2}\right)}_{B_{i}(a, s)} f_{1}\left(s_{1}\right) f_{2}\left(s_{2}\right) \mathrm{d} s_{1} \mathrm{~d} s_{2} \tag{B.6}\\
& +\sum_{i} \int_{0}^{1} \int_{0}^{1} \underbrace{\left(s_{i} a_{i}(s)-\frac{a_{i}(s)^{2}}{2}\right)}_{C_{i}(a, s)}\left(\Lambda_{i}\left(\mathrm{~d} s_{i}, s_{-i}\right)+\kappa_{i} f_{-i}\left(s_{-i}\right) F_{i}\left(\mathrm{~d} s_{i}\right)\right) \mathrm{d} s_{-i} \tag{B.7}
\end{align*}
$$

where the second equality is obtained by simultaneously adding and subtracting the $\operatorname{term} \sum_{i} \int_{0}^{1} \int_{0}^{1}\left(\kappa_{i} s_{i} a_{i}\left(s_{i}, s_{-i}\right)-\kappa_{i} \frac{a_{i}\left(s_{i}, s_{-i}\right)^{2}}{2}\right) f_{1}\left(s_{1}\right) f_{2}\left(s_{2}\right) \mathrm{d} s_{1} \mathrm{~d} s_{2}$. For any $s, A(a, s)$ is concave in a because u_{0} is concave. Hence, the integral in (B.5) is concave in a. For each i and $s, B_{i}(a, s)$ is also concave in a by the definition of κ_{i}. Hence, the term in (B.6) is concave in a. For any i and $s, C_{i}(a, s)$ is concave in a. Because we have already shown that $\Lambda_{i}\left(s_{i}, s_{-i}\right)+\kappa_{i} f_{-i}\left(s_{-i} F_{i}\left(s_{i}\right)\right)$ is increasing in $s_{i}, \Lambda_{i}\left(\mathrm{~d} s_{i}, s_{-i}\right)+$ $\kappa_{i} f_{-i}\left(s_{-i} F_{i}\left(\mathrm{~d} s_{i}\right)\right)$ is in fact a positive measure. Hence, the term in (B.7) is also concave in a. Being the sum of functionals that are concave in a, \mathcal{L} is also concave in a.

Step 2: For every $a \in \Phi, \lim _{\alpha \rightarrow 0} \frac{\mathcal{L}\left(\alpha a+(1-\alpha) a^{*}\right)-\mathcal{L}\left(a^{*}\right)}{\alpha} \leq 0$.
For each $a \in \Phi$, using the expression of $\mathcal{L}(a)$ in the previous step, we can directly calculate the Gateaux derivative ${ }^{1}$

$$
\begin{aligned}
\partial \mathcal{L}(a) \equiv & \lim _{\alpha \rightarrow 0} \frac{\mathcal{L}\left(a^{*}+\alpha a\right)-\mathcal{L}\left(a^{*}\right)}{\alpha} \\
= & \sum_{i} \iint\left(\frac{\partial w_{i}}{\partial a_{i}}\left(a_{i}^{*}(s), s\right) f_{1}\left(s_{1}\right) f_{2}\left(s_{2}\right)-\left(\Lambda_{i}\left(1, s_{-i}\right)-\Lambda_{i}(s)\right)\right) a_{i}(s) \mathrm{d} s_{1} \mathrm{~d} s_{2} \\
& +\sum_{i} \iint\left(s_{i}-a_{i}^{*}(s)\right) a_{i}(s) \Lambda_{i}\left(\mathrm{~d} s_{i}, s_{-i}\right) \mathrm{d} s_{-i}
\end{aligned}
$$

Recall that

$$
\Lambda_{i}\left(1, s_{-i}\right)-\Lambda_{i}\left(s_{i}, s_{-i}\right)= \begin{cases}\kappa_{i} F_{i}\left(s_{i}\right) f_{-i}\left(s_{-i}\right), & \text { if } s_{i} \in\left[0, \underline{\phi}_{i}\left(s_{-i}\right)\right] \\ \frac{\partial w_{i}}{\partial a_{i}}\left(s_{i}, s_{i}, s_{-i}\right) f_{i}\left(s_{i}\right) f_{-i}\left(s_{-i}\right), & \text { if } s_{i} \in\left(\underline{\phi}_{i}\left(s_{-i}\right), \bar{\phi}_{i}\left(s_{-i}\right)\right), \\ -\kappa_{i}\left(1-F_{i}\left(s_{i}\right)\right) f_{-i}\left(s_{-i}\right), & \text { if } s_{i} \in\left[\bar{\phi}_{i}\left(s_{-i}\right), 1\right]\end{cases}
$$

and

$$
a_{i}^{*}(s)= \begin{cases}\underline{\phi}_{i}\left(s_{-i}\right), & \text { if } s_{i} \in\left[0, \underline{\phi}_{i}\left(s_{-i}\right)\right] \\ s_{i}, & \text { if } s_{i} \in\left(\underline{\phi}_{i}\left(s_{-i}\right), \bar{\phi}_{i}\left(s_{-i}\right)\right) \\ \bar{\phi}_{i}\left(s_{-i}\right), & \text { if } s_{i} \in\left[\bar{\phi}_{i}\left(s_{-i}\right), 1\right]\end{cases}
$$

Hence, we can simplify the expression of $\partial \mathcal{L}(a)$ to
$\partial \mathcal{L}(a)$

$$
\begin{aligned}
& =\sum_{i} \int_{0}^{1}[\underbrace{\int_{0}^{\phi_{i}\left(s_{-i}\right)}\left(\frac{\partial w_{i}}{\partial a_{i}}\left(\underline{\phi}_{i}\left(s_{-i}\right), s\right) f_{i}\left(s_{i}\right)-\kappa_{i} F_{i}\left(s_{i}\right)-\kappa_{i}\left(s_{i}-\phi_{i}\left(s_{-i}\right)\right) f_{i}\left(s_{i}\right)\right) a_{i}(s) \mathrm{d} s_{i}}_{\ell_{i}\left(a, s_{-i}\right)}] \mathrm{d} F_{-i} \\
& +\sum_{i} \int_{0}^{1}[\underbrace{\int_{\bar{\phi}_{i}\left(s_{-i}\right)}^{1}\left(\frac{\partial w_{i}}{\partial a_{i}}\left(\bar{\phi}_{i}\left(s_{-i}\right), s\right) f_{i}\left(s_{i}\right)+\kappa_{i}\left(1-F_{i}\left(s_{i}\right)\right)-\kappa_{i}\left(s_{i}-\bar{\phi}_{i}\left(s_{-i}\right)\right) f_{i}\left(s_{i}\right)\right) a_{i}(s) \mathrm{d} s_{i}}_{h_{i}\left(a, s_{-i}\right)}] \mathrm{d} F_{-i}
\end{aligned}
$$

$$
\begin{aligned}
&{ }^{1} \text { Let } f:[0,1]^{2} \rightarrow \mathbb{R} \text { be a continuously differentiable function, and } \mu \text { be a finite measure over } \\
& {[0,1]^{2} \text {. Then, } } \\
& \begin{array}{ll}
\lim _{\alpha \rightarrow 0} \frac{\int_{[0,1]^{2}} f\left(a^{*}(s)+\alpha a(s)\right) \mu(\mathrm{d} s)-\int_{[0,1]^{2}} f\left(a^{*}(s)\right) \mu(\mathrm{d} s)}{\alpha} \\
& =\int_{[0,1]^{2}} \lim _{\alpha \rightarrow 0} \frac{f\left(a^{*}(s)+\alpha a(s)\right)-f\left(a^{*}(s)\right)}{\alpha} \mu(\mathrm{d} s) \\
& =\int_{[0,1]^{2}}\left(\sum_{i} \frac{\partial f}{\partial a_{i}}\left(a^{*}(s)\right) a_{i}(s)\right) \mu(\mathrm{d} s),
\end{array}
\end{aligned}
$$

where the first equality comes from interchanging the order of limit and integration. This is guaranteed by the bounded convergence theorem.

Consider $\ell_{i}\left(a, s_{-i}\right)$ first. Using the fact that $a_{i}(s)$ is increasing in s_{i}, we can also write $a_{i}(s)=a_{i}\left(\underline{\phi}_{i}\left(s_{-i}\right), s_{-i}\right)-\int_{\left[s_{i}, \phi_{i}\left(s_{-i}\right)\right)} a_{i}\left(\mathrm{~d} s_{i}, s_{-i}\right)$. Plugging this expression into $\ell_{i}\left(a, s_{-i}\right)$, we obtain

$$
\begin{align*}
& \ell_{i}\left(a, s_{-i}\right) \\
= & a_{i}\left(\underline{\phi}_{i}\left(s_{-i}\right), s_{-i}\right) \int_{0}^{\underline{\phi}_{i}\left(s_{-i}\right)}\left(\frac{\partial w_{i}}{\partial a_{i}}\left(\underline{\phi}_{i}\left(s_{-i}\right), s\right) f_{i}\left(s_{i}\right)-\kappa_{i} F_{i}\left(s_{i}\right)-\kappa_{i}\left(s_{i}-\underline{\phi}_{i}\left(s_{-i}\right)\right) f_{i}\left(s_{i}\right)\right) \mathrm{d} s_{i} \\
- & \int_{\left[0, \phi_{i}\left(s_{-i}\right)\right)}\left[\int_{0}^{s_{i}}\left(\frac{\partial w_{i}}{\partial a_{i}}\left(\underline{i}_{i}\left(s_{-i}\right), \tilde{s}\right) f_{i}\left(\tilde{s}_{i}\right)-\kappa_{i} F_{i}\left(\tilde{s}_{i}\right)-\kappa_{i}\left(\tilde{s}_{i}-\phi_{i}\left(s_{-i}\right)\right) f_{i}\left(\tilde{s}_{i}\right)\right) \mathrm{d} \tilde{s}_{i}\right] a_{i}\left(\mathrm{~d} s_{i}, s_{-i}\right) \\
= & a_{i}\left(\underline{\phi}_{i}\left(s_{-i}\right), s_{-i}\right) \int_{0}^{\underline{\phi}_{i}\left(s_{-i}\right)} \frac{\partial w_{i}}{\partial a_{i}}\left(\underline{\phi}_{i}\left(s_{-i}\right), s\right) f_{i}\left(s_{i}\right) \mathrm{d} s_{i} \\
- & \int_{\left[0, \phi_{i}\left(s_{-i}\right)\right)}\left[\int_{0}^{s_{i}} \frac{\partial w_{i}}{\partial a_{i}}\left(\underline{\phi}_{i}\left(s_{-i}\right), \tilde{s}\right) f_{i}\left(\tilde{s}_{i}\right) \mathrm{d} \tilde{s}_{i}-\kappa_{i}\left(s_{i}-\underline{\phi}_{i}\left(s_{-i}\right)\right) F_{i}\left(s_{i}\right)\right] a_{i}\left(\mathrm{~d} s_{i}, s_{-i}\right) \\
= & -\int_{\left[0, \underline{\phi}_{i}\left(s_{-i}\right)\right)}\left[\int_{0}^{s_{i}} \frac{\partial w_{i}}{\partial a_{i}}\left(\underline{\phi}_{i}\left(s_{-i}\right), \tilde{s}\right) f_{i}\left(\tilde{s}_{i}\right) \mathrm{d} \tilde{s}_{i}-\kappa_{i}\left(s_{i}-\underline{\phi}_{i}\left(s_{-i}\right)\right) F_{i}\left(s_{i}\right)\right] a_{i}\left(\mathrm{~d} s_{i}, s_{-i}\right), \tag{B.8}
\end{align*}
$$

where the first equality comes from changing the order of integration. The second equality comes from, for all $s_{i}, \int_{0}^{s_{i}}\left(\tilde{s}_{i}-\underline{\phi}_{i}\left(s_{-i}\right)\right) f_{i}\left(\tilde{s}_{i}\right) \mathrm{d} \tilde{s}_{i}=\left(s_{i}-\phi_{i}\left(s_{-i}\right)\right) F_{i}\left(s_{i}\right)-$ $\int_{0}^{s_{i}} F_{i}\left(\tilde{s}_{i}\right) \mathrm{d} \tilde{s}_{i}$. The third inequality comes from $\int_{0}^{\phi_{i}\left(s_{-i}\right)} \frac{\partial w_{i}}{\partial a_{i}}\left(\underline{\phi}_{i}\left(s_{-i}\right), s_{i}, s_{-i}\right) f_{i}\left(s_{i}\right) \mathrm{d} s_{i}=0$ by condition C 2 . By condition C 2 again, we know the term in the square bracket in (B.8) is nonnegative. This implies that $\ell_{i}\left(a, s_{-i}\right) \leq 0$. But notice that $a_{i}^{*}\left(s_{i}, s_{-i}\right)$ is constant over $s_{i} \in\left[0, \phi_{i}\left(s_{-i}\right)\right]$. Therefore, $\ell_{i}\left(a^{*}, s_{-i}\right)=0$.

Using a similar argument and condition C3, we can also show that $h_{i}\left(a, s_{-i}\right) \leq 0$ and $h_{i}\left(a^{*}, s_{-i}\right)=0$. Therefore, we know $\partial \mathcal{L}(a) \leq 0$ for all $a \in \Phi$ and $\partial \mathcal{L}\left(a^{*}\right)=0$.

Finally, using a similar argument as in the calculation of $\partial \mathcal{L}(a)$ (see footnote 1), we can calculate

$$
\lim _{\alpha \rightarrow 0} \frac{\mathcal{L}\left(\alpha a+(1-\alpha) a^{*}\right)-\mathcal{L}\left(a^{*}\right)}{\alpha}=\partial \mathcal{L}(a)-\partial \mathcal{L}\left(a^{*}\right) \leq 0
$$

Step 3: a^{*} solves (B.4).
Suppose not. There exists $a \in \Phi$ such that $\mathcal{L}(a)>\mathcal{L}\left(a^{*}\right)$. By concavity from Step 1, $\mathcal{L}\left(\alpha a+(1-\alpha) a^{*}\right) \geq \alpha \mathcal{L}(a)+(1-\alpha) \mathcal{L}\left(a^{*}\right)$ for all $\alpha \in(0,1)$. Equivalently, $\frac{\mathcal{L}\left(\alpha a+(1-\alpha) a^{*}\right)-\mathcal{L}\left(a^{*}\right)}{\alpha} \geq \mathcal{L}(a)-\mathcal{L}\left(a^{*}\right)$ for all $\alpha \in(0,1)$. Letting α go to 0 yields $\lim _{\alpha \rightarrow 0} \frac{\mathcal{L}\left(\alpha a+(1-\alpha) a^{*}\right)-\mathcal{L}\left(a^{*}\right)}{\alpha} \geq \mathcal{L}(a)-\mathcal{L}\left(a^{*}\right)>0$, contradicting Step 2. Therefore, a^{*} is a solution to (B.4), completing the proof.

Online Appendix C Proofs for Section 4

Proof of Proposition 2. We first verify that all the conditions needed in Theorem 2 are satisfied. For this, we only verify condition U1. All other conditions are straightforward.

We continue to use notation $\underline{g}_{i}\left(x, s_{-i}\right)$ and $\bar{g}_{i}\left(x, s_{-i}\right)$ defined in the proof of Lemma 3. Moreover, for notational simplicity, let $\tilde{\lambda}_{i}=\frac{\lambda_{i}}{\lambda_{0}}$ for $i=1,2$. Consider $\underline{g}_{i}\left(x, s_{-i}\right)$. It is easy to calculate that

$$
\begin{aligned}
\frac{\partial \underline{g}_{i}\left(x, s_{-i}\right)}{\partial x} & =-2 \int_{0}^{x} \tilde{\lambda}_{i} F_{i}\left(s_{i}\right) \mathrm{d} s_{i}-2 F_{i}(x)\left(x-s_{-i}\right), \\
\frac{\partial^{2} \underline{g_{i}}\left(x, s_{-i}\right)}{\partial x^{2}} & =2 F_{i}(x)\left[\frac{f_{i}(x)}{F_{i}(x)}\left(s_{-i}-x\right)-\left(\tilde{\lambda}_{i}+1\right)\right]
\end{aligned}
$$

When $s_{-i}=0, \frac{\partial^{2} \underline{g}_{i}(x, 0)}{\partial x^{2}}<0$ for $x \in(0,1]$. Therefore, \underline{g}_{i} is strictly concave and hence strictly quasi-concave. Assume $s_{-i}>0$. Let $\theta(x) \equiv \frac{f_{i}(x)}{F_{i}(x)}\left(s_{-i}-x\right)-\left(\tilde{\lambda}_{i}+1\right)$. Because $\frac{f_{i}}{F_{i}}$ is decreasing by Lemma $16, \theta$ is strictly decreasing over $\left(0, s_{-i}\right]$. Because $\lim _{x \downarrow 0} \frac{f_{i}(x)}{F_{i}(x)}=+\infty$ by Lemma 16 again, we know $\lim _{x \downarrow 0} \theta(x)=+\infty$. Moreover, because $\theta\left(s_{-i}\right)<0$, we know there exists $x^{\prime} \in\left(0, s_{-i}\right)$ such that θ is positive over $\left(0, x^{\prime}\right)$ and negative over $\left(x^{\prime}, s_{-i}\right)$. Clearly, θ is also negative over $\left[s_{-i}, 1\right]$. Therefore, over the interval $(0,1), \frac{\partial^{2} \underline{g_{i}}\left(\cdot, s_{-i}\right)}{\partial x^{2}}$ single-crosses the x-axis from above, implying that $\underline{g}_{i}\left(\cdot, s_{-i}\right)$ is strictly quasi-concave. We can similarly show that $\bar{g}_{i}\left(\cdot, s_{-i}\right)$ is strictly quasi-concave.

From the proof of Lemma 3, we know that $c_{i}^{*}\left(s_{-i}\right)=\arg \max _{x \in[0,1]} \underline{g}_{i}\left(x, s_{-i}\right)$. Observe that $\frac{\partial \underline{g_{i}}\left(0, s_{-i}\right)}{\partial x}=0$ for all s_{-i}. When $s_{-i}=0$, the above analysis implies that $\frac{\partial g_{i}\left(x, s_{-i}\right)}{\partial x}<0$ for $x>0$. Therefore, $c_{i}^{*}(0)=0$. When $s_{i}>0$, the above analysis implies that $c_{i}^{*}\left(s_{-i}\right)>0$ and satisfies the first order condition

$$
\frac{\partial \underline{g_{i}}\left(c_{i}^{*}\left(s_{-i}\right), s_{-i}\right)}{\partial x}=-2 \int_{0}^{c_{i}^{*}\left(s_{-i}\right)} \tilde{\lambda}_{i} F_{i}\left(s_{i}\right) \mathrm{d} s_{i}-2 F_{i}\left(c_{i}^{*}\left(s_{-i}\right)\right)\left(c_{i}^{*}\left(s_{-i}\right)-s_{-i}\right)=0,
$$

or equivalently

$$
\begin{equation*}
c_{i}^{*}\left(s_{-i}\right)=s_{-i}-\tilde{\lambda}_{i} \frac{\int_{0}^{c_{i}^{*}\left(s_{-i}\right)} F_{i}\left(s_{i}\right) \mathrm{d} s_{i}}{F_{i}\left(c_{i}^{*}\left(s_{-i}\right)\right)}<s_{-i} . \tag{C.1}
\end{equation*}
$$

Similarly, we can show that $d_{i}^{*}(1)=1$. When $s_{-i}<1$, we have $d_{i}^{*}\left(s_{-i}\right)<1$ and is determined by

$$
\begin{equation*}
d_{i}^{*}\left(s_{-i}\right)=s_{-i}+\tilde{\lambda}_{i} \frac{\int_{d_{i}^{*}\left(s_{-i}\right)}^{1}\left(1-F_{i}\left(s_{i}\right)\right) \mathrm{d} s_{i}}{1-F_{i}\left(d_{i}^{*}\left(s_{-i}\right)\right)}>s_{-i} . \tag{C.2}
\end{equation*}
$$

This completes the proof.

Propositions 3 and 4 are built on the next two simple lemmas. Lemma C. 1 is a technical result about log-concavity. It strengthens some of the results in Lemma 16.

Lemma C.1. If f_{i} is log-concave, both $s_{i} \mapsto \int_{0}^{s_{i}} F_{i}\left(s_{i}^{\prime}\right) \mathrm{d} s_{i}^{\prime}$ and $s_{i} \mapsto \int_{s_{i}}^{1}\left(1-F_{i}\left(s_{i}^{\prime}\right)\right) \mathrm{d} s_{i}^{\prime}$ are strictly log-concave. Therefore, $\frac{F_{i}\left(s_{i}\right)}{\int_{0}^{s_{i}} F_{i}\left(s_{i}^{\prime}\right) \mathrm{ds}_{i}^{\prime}}$ is strictly decreasing and $\frac{1-F_{i}\left(s_{i}\right)}{\int_{s_{i}}^{1}\left(1-F_{i}\left(s_{i}^{\prime}\right)\right) \mathrm{d} s_{i}^{\prime}}$ is strictly increasing.

Proof. We only show that $s_{i} \mapsto \int_{s_{i}}^{1}\left(1-F\left(s_{i}^{\prime}\right)\right) \mathrm{d} s_{i}^{\prime}$ is strictly log-concave. The other one is similar. Consider any $s_{i} \in(0,1)$. By part (i) in Lemma 16, we know there exists $s_{i}^{\prime \prime} \in\left(s_{i}, 1\right)$ such that

$$
\frac{f_{i}\left(s_{i}\right)}{1-F_{i}\left(s_{i}\right)} \leq \frac{f_{i}\left(s_{i}^{\prime}\right)}{1-F_{i}\left(s_{i}^{\prime}\right)}, \forall s_{i}^{\prime} \in\left(s_{i}, 1\right)
$$

with strictly inequality when $s_{i}^{\prime} \in\left(s_{i}^{\prime \prime}, 1\right)$. This implies

$$
\frac{f_{i}\left(s_{i}\right)}{1-F_{i}\left(s_{i}\right)} \int_{s_{i}}^{1}\left(1-F_{i}\left(s_{i}^{\prime}\right)\right) \mathrm{d} s_{i}^{\prime}<\int_{s_{i}}^{1} \frac{f_{i}\left(s_{i}^{\prime}\right)}{1-F_{i}\left(s_{i}^{\prime}\right)}\left(1-F_{i}\left(s_{i}^{\prime}\right)\right) \mathrm{d} s_{i}^{\prime}=1-F_{i}\left(s_{i}\right)
$$

which in turn implies

$$
\left[\log \int_{s_{i}}^{1}\left(1-F_{i}\left(s_{i}^{\prime}\right)\right) \mathrm{d} s_{i}^{\prime}\right]^{\prime \prime}=\frac{f_{i}\left(s_{i}\right) \int_{s_{i}}^{1}\left(1-F_{i}\left(s_{i}^{\prime}\right)\right) \mathrm{d} s_{i}^{\prime}-\left(1-F_{i}\left(s_{i}\right)\right)^{2}}{\left(\int_{s_{i}}^{1}\left(1-F_{i}\left(s_{i}^{\prime}\right)\right) \mathrm{d} s_{i}^{\prime}\right)^{2}}<0
$$

Therefore, $\int_{s_{i}}^{1}\left(1-F_{i}\left(s_{i}^{\prime}\right)\right) \mathrm{d} s_{i}^{\prime}$ is strictly log-concave.
Lemma C. 2 below shows the monotone comparative statics of agents' unilaterally constrained delegation rules with respect to the parameters. Denote by ($c_{i, \lambda_{0}, \lambda_{i}}^{*}, d_{i, \lambda_{0}, \lambda_{i}}^{*}$) the unilaterally constrained delegation rule for agent i when the importance of coordination is λ_{0} and that of his adaptation is $\lambda_{i} .{ }^{2}$

Lemma C.2. For any $s_{-i} \in(0,1), c_{i, \lambda_{0}, \lambda_{i}}^{*}\left(s_{-i}\right)$ is strictly increasing in λ_{0} and strictly decreasing in $\lambda_{i} ; d_{i, \lambda_{0}, \lambda_{i}}^{*}\left(s_{-i}\right)$ is strictly decreasing in λ_{0} and strictly increasing in λ_{i}.

Proof of Lemma C.2. For example, assume $\bar{\lambda}_{i}>\underline{\lambda}_{i}$. Pick any $s_{-i} \in(0,1)$. For notational simplicity, let $\underline{c}=c_{i, \lambda_{0}, \underline{\lambda}_{i}}^{*}\left(s_{-i}\right)$ and $\bar{c}=c_{i, \lambda_{0}, \bar{\lambda}_{i}}^{*}\left(s_{-i}\right)$. By (C.1), we have

$$
\underline{c}+\frac{\lambda_{i}}{\lambda_{0}} \frac{\int_{0}^{\frac{c}{c}} F_{i}\left(s_{i}\right) \mathrm{d} s_{i}}{F_{i}(\underline{c})}=\bar{c}+\frac{\bar{\lambda}_{i}}{\lambda_{0}} \frac{\int_{0}^{\bar{c}} F_{i}\left(s_{i}\right) \mathrm{d} s_{i}}{F_{i}(\bar{c})}>\bar{c}+\frac{\lambda_{i}}{\lambda_{0}} \frac{\int_{0}^{\bar{c}} F_{i}\left(s_{i}\right) \mathrm{d} s_{i}}{F_{i}(\bar{c})} .
$$

[^0]Because $c \mapsto c+\frac{\lambda_{i}}{\lambda_{0}} \frac{\int_{0}^{c} F_{i}\left(s_{i}\right) \text { ds } s_{i}}{F_{i}(c)}$ is strictly increasing by Lemma C.1, we know $\underline{c}>\bar{c}$. This proves that $c_{i, \lambda_{0}, \lambda_{i}}^{*}\left(s_{-i}\right)$ is strictly decreasing in λ_{i}. The same argument can be applied to show that $c_{i, \lambda_{0}, \lambda_{i}}^{*}\left(s_{-i}\right)$ is strictly increasing in λ_{0}. The proof for $d_{i, \lambda_{0}, \lambda_{i}}^{*}$ is analogous.

Proof of Proposition 3. Let $\left(\phi_{1, \lambda_{0}}^{*}, \phi_{2, \lambda_{0}}^{*}\right)$ be the principal's optimal contingent delegation when the importance of coordination to her is λ_{0}. For any s_{-i}, We show that $\underline{\phi}_{i, \lambda_{0}}^{*}\left(s_{-i}\right)$ is increasing while $\bar{\phi}_{i, \lambda_{0}}^{*}\left(s_{-i}\right)$ is decreasing in λ_{0}, for both $i=1,2$. For notational simplicity, we suppress λ_{i} from the previous notation $c_{i, \lambda_{0}, \lambda_{i}}^{*}$ and $d_{i, \lambda_{0}, \lambda_{i}}^{*}$, and directly write $c_{i, \lambda_{0}}^{*}$ and $d_{i, \lambda_{0}}^{*}$.

Consider $0<\underline{\lambda}_{0}<\bar{\lambda}_{0}<\infty$. We show $\bar{\phi}_{1, \bar{\lambda}_{0}}^{*} \leq \bar{\phi}_{1, \lambda_{0}}^{*}$ and $\underline{\phi}_{2, \bar{\lambda}_{0}}^{*} \geq \underline{\phi}_{2, \lambda_{0}}^{*}$. The proof is most easily understood by looking at Figure C.1. Let $\left(\bar{L}_{1, \lambda_{0}}, \underline{H}_{2, \lambda_{0}}\right)$ be the intersection of $d_{1, \lambda_{0}}^{*}$ and $c_{2, \lambda_{0}}^{*}$ for $\lambda_{0} \in\left\{\underline{\lambda}_{0}, \bar{\lambda}_{0}\right\}$. By Lemma C.2, we know $d_{1, \bar{\lambda}_{0}}^{*} \leq d_{1, \lambda_{0}}^{*}$ and $c_{2, \bar{\lambda}_{0}}^{*} \geq c_{2, \lambda_{0}}^{*}$. Hence in Figure C.1, $\left(\bar{L}_{1, \underline{\lambda}_{0}}, \underline{H}_{2, \lambda_{0}}\right)$ can only appear in one of the regions i, i, or iii .

Figure C.1: Graph for the proof of Proposition 3

We claim that, in fact, $\left(\bar{L}_{1, \lambda_{0}}, \underline{H}_{2, \lambda_{0}}\right)$ can only be in region iii. To see this, note that $c_{2, \lambda_{0}}^{*}\left(d_{1, \lambda_{0}}^{*}\left(\underline{H}_{2, \lambda_{0}}\right)\right)=\underline{H}_{2, \lambda_{0}}$, for $\lambda_{0} \in\left\{\underline{\lambda}_{0}, \bar{\lambda}_{0}\right\}$. Using (C.1), (C.2), and the fact $d_{1, \lambda_{0}}^{*}\left(\underline{H}_{2, \lambda_{0}}\right)=\underline{L}_{1, \lambda_{0}}$, we know

$$
\begin{aligned}
0 & =\frac{\lambda_{2}}{\underline{\lambda}_{0}} \frac{\int_{\bar{L}_{1, \lambda_{0}}}^{1}\left(1-F_{1}\left(s_{1}\right)\right) \mathrm{d} s_{1}}{1-F_{1}\left(\bar{L}_{1, \lambda_{0}}\right)}-\frac{\lambda_{1}}{\underline{\lambda}_{0}} \frac{\int_{0}^{\underline{H}_{2}, \underline{\lambda}_{0}} F_{2}\left(s_{2}\right) \mathrm{d} s_{2}}{F_{2}\left(\underline{H}_{2, \lambda_{0}}\right)} \\
& =\frac{\lambda_{2}}{\bar{\lambda}_{0}} \frac{\int_{\bar{L}_{1, \bar{\lambda}_{0}}^{1}}^{1}\left(1-F_{1}\left(s_{1}\right)\right) \mathrm{d} s_{1}}{1-F_{1}\left(\bar{L}_{1, \bar{\lambda}_{0}}\right)}-\frac{\lambda_{1}}{\bar{\lambda}_{0}} \frac{\int_{0}^{\underline{H}_{2, \bar{\lambda}_{0}}} F_{2}\left(s_{2}\right) \mathrm{d} s_{2}}{F_{2}\left(\underline{H}_{2, \bar{\lambda}_{0}}\right)} .
\end{aligned}
$$

Because $x \mapsto \frac{\int_{x}^{1}\left(1-F_{1}\left(s_{1}\right) \mathrm{d} s_{1}\right.}{1-F_{1}(x)}$ is strictly decreasing and $x \mapsto \frac{\int_{0}^{x} F_{2}\left(s_{2}\right) \mathrm{d} s_{2}}{F_{2}(x)}$ is strictly increasing by Lemma C.1, it is easy to see from the above equation that we can have neither $\bar{L}_{1, \underline{\lambda}_{0}} \leq \bar{L}_{1, \bar{\lambda}_{0}}$ and $\underline{H}_{2, \lambda_{0}}<\underline{H}_{2, \bar{\lambda}_{0}}$, nor $\bar{L}_{1, \underline{\lambda}_{0}}>\bar{L}_{1, \bar{\lambda}_{0}}$ and $\underline{H}_{2, \underline{\lambda}_{0}} \geq \bar{H}_{2, \lambda_{0}}$. In other words, $\left(\bar{L}_{1, \lambda_{0}}, \underline{H}_{2, \lambda_{0}}\right)$ can be in neither region i nor region ii.

Therefore, $\left(\bar{L}_{1, \underline{\lambda}_{0}}, \underline{H}_{2, \lambda_{0}}\right)$ is in region iii. Equivalently, $\bar{L}_{1, \lambda_{0}} \geq \bar{L}_{1, \bar{\lambda}_{0}}$ and $\underline{H}_{2, \underline{\lambda}_{0}} \leq$ $\underline{H}_{2, \bar{\lambda}_{0}}$. For any $s_{2} \in[0,1)$, we then have

$$
\bar{\phi}_{1, \underline{\lambda}_{0}}^{*}\left(s_{1}\right)=\max \left\{d_{1, \underline{\lambda}_{0}}^{*}\left(s_{1}\right), \bar{L}_{1, \underline{\lambda}_{0}}\right\} \geq \max \left\{d_{1, \bar{\lambda}_{0}}^{*}\left(s_{1}\right), \bar{L}_{1, \bar{\lambda}_{0}}\right\}=\bar{\phi}_{1, \bar{\lambda}_{0}}^{*}\left(s_{1}\right) .
$$

Similarly, for any $s_{1} \in(0,1]$, we have

$$
\underline{\phi}_{2, \underline{\lambda}_{0}}^{*}\left(s_{2}\right)=\min \left\{c_{2, \underline{\lambda}_{0}}^{*}\left(s_{2}\right), \underline{H}_{2, \bar{\lambda}_{0}}\right\} \leq \min \left\{c_{2, \bar{\lambda}_{0}}^{*}\left(s_{2}\right), \underline{H}_{2, \bar{\lambda}_{0}}\right\}=\underline{\phi}_{2, \bar{\lambda}_{0}}^{*}\left(s_{2}\right) .
$$

Figure C. 2 gives an illustration.

(a) $\left(c_{i}^{*}, d_{i}^{*}\right)$

(b) ϕ_{1}^{*}

(c) ϕ_{2}^{*}

Figure C.2: Importance of coordination and optimal discretion: $\bar{\lambda}_{0}>\underline{\lambda}_{0}$

Proof of Proposition 4. It is a direct implication of Lemma C.2. See Figure C. 3 for an illustration.

Proposition 5 is a direct implication of Lemma C. 3 below. Denote by $\left(c_{i, f_{i}}^{*}, d_{i, f_{i}}^{*}\right)$ i 's unilaterally coordinated delegation rule when his state distribution is f_{i}.

Lemma C.3. Suppose $0<\lambda_{i}<\infty$. Consider two densities \underline{f}_{i} and \bar{f}_{i} of agent i 's state distribution. If the likelihood ratio $\bar{f}_{i} / \underline{f}_{i}$ is (strictly) increasing, then $c_{i, \bar{f}_{i}}^{*}\left(s_{-i}\right) \geq$ $(>) c_{i, f_{i}}^{*}\left(s_{-i}\right)$ and $d_{i, \bar{f}_{i}}^{*}\left(s_{-i}\right) \geq(>) d_{i, f_{i}}^{*}\left(s_{-i}\right)$ for all $s_{-i} \in(0,1)$.
Proof of Lemma C.3. Let \bar{F}_{i} and \underline{F}_{i} be the c.d.f's of \bar{f}_{i} and \underline{f}_{i} respectively. Because \bar{f}_{i} and \underline{f}_{i} satisfy the (strict) MLRP, we know that, for all $c, d \in(0,1),{ }^{3}$

$$
\frac{\int_{0}^{c} \bar{F}_{i}\left(s_{i}\right) \mathrm{d} s_{i}}{\bar{F}_{i}(c)} \leq(<) \frac{\int_{0}^{c} \underline{F}_{i}\left(s_{i}\right) \mathrm{d} s_{i}}{\underline{F}_{i}(c)} \text { and } \frac{\int_{d}^{1}\left(1-\bar{F}_{i}\left(s_{i}\right)\right) \mathrm{d} s_{i}}{1-\bar{F}_{i}\left(s_{i}\right)} \geq(>) \frac{\int_{d}^{1}\left(1-\underline{F}_{i}\left(s_{i}\right)\right) \mathrm{d} s_{i}}{1-\underline{F}_{i}\left(s_{i}\right)} .
$$

[^1]

Figure C.3: Relative importance and optimal discretion: $\bar{\lambda}_{2}>\underline{\lambda}_{2}$

Consider $s_{-i} \in(0,1)$. Let $\underline{c}=c_{i, \underline{f}_{i}}^{*}\left(s_{-i}\right)$ and $\bar{c}=c_{i, \bar{f}_{i}}^{*}\left(s_{-i}\right)$. By (C.1), we have

$$
\underline{c}+\frac{\lambda_{i}}{\lambda_{0}} \frac{\int_{0}^{\underline{c}} \underline{F}_{i}\left(s_{i}\right) \mathrm{d} s_{i}}{\underline{F}_{i}(\underline{c})}=\bar{c}+\frac{\lambda_{i}}{\lambda_{0}} \frac{\int_{0}^{\bar{c}} \bar{F}_{i}\left(s_{i}\right) \mathrm{d} s_{i}}{\bar{F}_{i}(\bar{c})} \leq(<) \bar{c}+\frac{\lambda_{i}}{\lambda_{0}} \frac{\int_{0}^{\bar{c}} \underline{F}_{i}\left(s_{i}\right) \mathrm{d} s_{i}}{\underline{F}_{i}(\bar{c})} .
$$

Again, because $c \mapsto c+\frac{\lambda_{i}}{\lambda_{0}} \frac{\int_{0}^{c} \underline{F}_{i}\left(s_{i}\right) \mathrm{d} s_{i}}{\underline{F}_{i}(c)}$ is strictly increasing, we know $\underline{c} \leq(<) \bar{c}$. Figure C. 4 provides an illustration.

Figure C.4: State distribution and optimal discretion: $\bar{f}_{2} / \underline{f}_{2}$ is increasing

References

Shaked, M. and J. G. Shanthikumar (2007): Stochastic Orders, Springer Science \& Business Media.

[^0]: ${ }^{2}$ The unilaterally constrained delegation rule for agent i does not depend on the importance of agent $-i$'s adaptation.

[^1]: ${ }^{3}$ See, for example, Theorem 1.C. 1 in Shaked and Shanthikumar (2007).

