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This online appendix contains missing proofs. Section A provides the missing

proof of Lemma 12. Section B provides the proof of Theorem 3 in Appendix D.1.

Section C contains the proofs for Section 4.

Online Appendix A Missing Proof of Lemma 12

In Appendix B.3, we have proved Lemma 12 assuming that there exist desired h1 and

h2 that satisfy parts (i) and (ii) of Lemma 12. The next lemma confirms the existence

of such h1 and h2.

Lemma A.1. For every s1 ∈ [
¯
L1, H̄1], there exists a unique h2(s1) ∈ [c∗2(s1), d∗2(s1)]

such that the following equation holds

s1 =
h2(s1)− c∗2(s1)

d∗2(s1)− c∗2(s1)
d∗1(h2(s1)) +

d∗2(s1)− h2(s1)

d∗2(s1)− c∗2(s1)
c∗1(h2(s1)). (A.1)

Then, h1 ≡ h−1
2 and h2 satisfy parts (i) and (ii) of Lemma 12.

Proof. For every s1 ∈ [
¯
L1, H̄1] and s2 ∈ [c∗2(s1), d∗2(s1)], define

g(s1, s2) ≡ s2 − c∗2(s1)

d∗2(s1)− c∗2(s1)
d∗1(s2) +

d∗2(s1)− s2

d∗2(s1)− c∗2(s1)
c∗1(s2). (A.2)

It is well defined by condition U and continuous by Lemma 2. We divide the remaining

proof into several small steps.

Step 1: For every s1, g(s1, · ) is strictly increasing.

Consider c∗2(s1) ≤ s2 < s′2 ≤ d∗2(s1). We have

g(s1, s2) ≤ s2 − c∗2(s1)

d∗2(s1)− c∗2(s1)
d∗1(s′2) +

d∗2(s1)− s2

d∗2(s1)− c∗2(s1)
c∗1(s′2)

=
s2 − c∗2(s1)

d∗2(s1)− c∗2(s1)
(d∗1(s′2)− c∗1(s′2)) + c∗1(s′2)

<
s′2 − c∗2(s1)

d∗2(s1)− c∗2(s1)
(d∗1(s′2)− c∗1(s′2)) + c∗1(s′2)

= g(s1, s
′
2),

where the first inequality comes from monotonicity of c∗1 and d∗1 by Lemma 2. The

second inequality comes from d∗1(s′2) > c∗1(s′2) by condition U.
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Step 2: If s1 =
¯
L1, the unique h2(s1) ∈ [c∗2(

¯
L1), d∗2(

¯
L1)] that satisfies g(s1, h2(s1)) = s1

is h2(s1) =
¯
L2.

Because c∗2(
¯
L1) =

¯
L2 and c∗1(

¯
L2) =

¯
L1, it is straightforward to see g(

¯
L1,

¯
L2) =

¯
L1.

Uniqueness comes from the previous step.

Step 3: If s1 = H̄1, the unique h2(s1) ∈ [c∗2(H̄1), d∗2(H̄1)] that satisfies g(s1, h2(s1)) =

s1 is h2(s1) = H̄2.

The proof is similar to the previous one.

Step 4: If s1 ∈ (
¯
L1, H̄1), then there exists a unique h2(s1) ∈ (c∗2(s1), d∗2(s1)) such that

g(s1, h2(s1)) = s1.

It is easy to see g(s1, c
∗
2(s1)) = c∗1(c∗2(s1)). Because s1 >

¯
L1, we then know

g(s1, c
∗
2(s1)) < s1 by Lemma 9. Similarly, because g(s1, d

∗
2(s1)) = d∗1(d∗2(s1)) and

s1 < H̄1, we know g(s1, d
∗
2(s1)) > s1 by Lemma 9 again. Thus, by Step 1, we know

there exists a unique h2(s1) ∈ (c∗2(s1), d∗2(s1)) such that g(s1, h2(s1)) = s1.

Step 5: h2 : [
¯
L1, H̄1]→ [

¯
L2, H̄2] is continuous and surjective.

Let {sn1}n≥1 ⊂ [
¯
L1, H̄1] be a sequence converging to s1 ∈ [

¯
L1, H̄1]. Because

{h2(sn1 )}n≥1 ⊂ [
¯
L2, H̄2], it has a convergent subsequence {h2(snk1 )}k≥1. Let s2 ≡

limk→∞ h2(snk1 ) ∈ [c∗2(s1), d∗2(s1)]. Because g(snk1 , h2(snk1 )) = snk1 for all k ≥ 1 and g is

continuous, we know g(s1, s2) = s1. By Steps 2 - 4, we know s2 = h2(s1). This proves

the continuity of h2. Because h2(
¯
L1) =

¯
L2 and h2(H̄1) = H̄2 by Steps 2 and 3, we

know h2 is surjective since it is continuous.

Step 6: h2(
¯
L1) < h2(s1) < h2(H̄1) for all s1 ∈ (

¯
L1, H̄1).

For all s1 ∈ (
¯
L1, H̄1), we have

h2(
¯
L1) =

¯
L2 = c∗2(

¯
L1) ≤ c∗2(s1) < h2(s1) < d∗2(s1) ≤ d∗2(H̄1) = H̄2 = h2(H̄1),

where the first and last equalities come from Steps 2 and 3. The two weak inequalities

come from monotonicity of c∗2 and d∗2. The two strict inequalities come from Step 4.

Step 7: h2 : [
¯
L1, H̄1]→ [

¯
L2, H̄2] is strictly increasing.

We first argue that h2 is injective. Consider
¯
L1 ≤ s1 < s′1 ≤ H̄1. Suppose, by

contradiction, h2(s1) = h2(s′1) ≡ s2. By Step 6, we know
¯
L1 < s1 < s′1 < H̄1. Thus,

c∗2(s1) < s2 < d∗2(s1) and c∗2(s′1) < s2 < d∗2(s′1) by Step 4.
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Because g(s1, s2) = s1 < s′1 = g(s′1, s2) and d∗1(s2) > c∗1(s2), we can directly see

from (A.2) that
s2 − c∗2(s1)

d∗2(s1)− c∗2(s1)
<

s2 − c∗2(s′1)

d∗2(s′1)− c∗2(s′1)
,

which implies
d∗2(s1)− s2

s2 − c∗2(s1)
>
d∗2(s′1)− s2

s2 − c∗2(s′1)
.

But this is impossible, since 0 < s2 − c∗2(s′1) ≤ s2 − c∗2(s′1) and 0 < d∗2(s1) − s2 ≤
d∗2(s′1)− s2. Therefore, h2 is injective.

Because h2 is continuous by Step 5, we now know h2 is strictly monotone. Because

h2(
¯
L1) < h2(H̄1), we know h2 is strictly increasing.

The above Steps 2 - 4 and 7 together guarantee that h2 satisfies parts (i) and (ii) in

Lemma 12. These steps, together with Step 5, guarantee that h1 ≡ h−1
2 : [

¯
L2, H̄2]→

[
¯
L1, H̄1] is well defined and satisfies part (i).

Step 8: For all s2 ∈ (
¯
L2, H̄2), h1(s1) ∈ (c∗1(s2), d∗1(s2)). That is, h1 satisfies part (ii).

Let s1 ≡ h1(s2) ∈ (
¯
L1, H̄1). Then, (A.1) can be written as

h1(s2) =
h2(s1)− c∗2(s1)

d∗2(s1)− c∗2(s1)
d∗1(s2) +

d∗2(s1)− h2(s1)

d∗2(s1)− c∗2(s1)
c∗1(s2).

Because
h2(s1)−c∗2(s1)

d∗2(s1)−c∗2(s1)
∈ (0, 1) by Step 4, we immediately know h1(s2) ∈ (c∗1(s2), d∗1(s2)).

This completes the proof.

Online Appendix B Proof of Theorem 3

Proof of Theorem 3. For notational simplicity, we write a∗i (si, s−i) for σφi (si, s−i). The

goal is to show that a∗ ≡ (a∗1, a
∗
2) solves the following problem, which is equivalent to

(1) by the standard envelope theorem argument:

max
(a1,a2)

∫∫ (
u0(a1(s1, s2), a2(s1, s2)) +

∑
i

ui(ai(si, s−i), si)
)
f1(s1)f2(s2) ds1ds2,

(B.1)

subject to:

siai(si, s−i)−
ai(si, s−i)

2

2
=

∫ si

0

ai(s̃i, s−i)ds̃i −
ai(0, s−i)

2

2
, ∀i, si, s−i,

ai(si, s−i) is increasing in si, ∀i, s−i.

3



Define the following (cumulative) Lagrange multiplier:

Λi(si, s−i) =


f−i(s−i)(1− κiFi(si)), si ∈ [0,

¯
φi(s−i)],

f−i(s−i)(1− ∂wi
∂ai

(si, si, s−i)fi(si)), si ∈ (
¯
φi(s−i), φ̄i(s−i)),

f−i(s−i)(1 + κi(1− Fi(si))), si ∈ [φ̄i(s−i), 1].

We argue that, for every s−i, the following function is increasing in si:

Λi(si, s−i) + κif−i(s−i)Fi(si)

=


f−i(s−i), si ∈ [0,

¯
φi(s−i)],

f−i(s−i)(1 + κiFi(si)− ∂wi
∂ai

(si, si, s−i)fi(si)), si ∈ (
¯
φi(s−i), φ̄i(s−i)),

f−i(s−i)(1 + κi), si ∈ [φ̄i(s−i), 1],

Clearly, it is increasing over [0,
¯
φi(s−i)] and [φ̄i(s−i), 1]. By condition C1, it is also

increasing over [
¯
φi(s−i), φ̄i(s−i)]. Hence, to show that it is increasing over [0, 1], it

suffices to verify the following two inequalities:

κiFi(
¯
φi(s−i)) ≥

∂wi
∂ai

(
¯
φi(s−i),

¯
φi(s−i), s−i)fi(

¯
φi(s−i)), (B.2)

κi(1− Fi(φ̄i(s−i))) ≥ −
∂wi
∂ai

(φ̄i(s−i), φ̄i(s−i), s−i)fi(φ̄i(s−i)). (B.3)

If
¯
φi(s−i) = 0, (B.2) is directly implied by condition C2′. If

¯
φi(s−i) > 0, we know

from condition C2 that

g(si) = (si−
¯
φi(s−i))κiFi(si)−

∫ si

0

∂wi
∂ai

(
¯
φi(s−i), s̃i, s−i)fi(s̃i)ds̃i ≤ 0, ∀si ∈ [0,

¯
φi(s−i)],

with equality at
¯
φi(s−i). This implies that g′(

¯
φi(s−i)) ≥ 0. Equivalently, (B.2) holds.

Using conditions C3 and C3′, we can similarly verify that (B.3) also holds.

For every s−i, being the difference of two increasing functions, Λi(si, s−i) as a

function of si has bounded variation. As a result, it induces a well-defined (signed)

measure Λi(dsi, s−i) over [0, 1]. Let

Φ ≡ {direct mechanism (a1, a2) | ai(si, s−i) is increasing in si}.

Define the Lagrangian function L : Φ→ R as, for every a ∈ Φ,

L(a) ≡
∫∫ (

u0(a1(s1, s2), a2(s1, s2)) +
∑
i

ui(ai(si, s−i), si)
)
f1(s1)f2(s2) ds1ds2

−
∑
i

∫∫ (∫ si

0
ai(s̃i, s−i)ds̃i −

ai(0, s−i)
2

2
− siai(si, s−i) +

ai(si, s−i)
2

2

)
Λi(dsi, s−i)ds−i
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In what follows, we proceed to show that a∗ solves

max
a∈Φ
L(a), (B.4)

which is sufficient for a∗ to be a solution to (B.1).

Step 1: L is concave.

Note that for all s−i,∫ 1

0

(∫ si

0

ai(s̃i, s−i)ds̃i

)
Λi(dsi, s−i) =

∫ 1

0

ai(si, s−i)
(
Λi(1, s−i)− Λi(si, s−i)

)
dsi,∫ 1

0

−ai(0, s−i)
2

2
Λi(dsi, s−i) = −ai(0, s−i)

2

2
(Λi(1, s−i)− Λi(0, s−i)) = 0,

where the last equality comes from the construction of Λi. Hence, L(a) can be

rewritten as

L(a) =

∫∫ (
u0(a(s))f1(s1)f2(s2)−

∑
i

ai(s)(Λi(1, s−i)− Λi(si, s−i))
)

ds1ds2

+
∑
i

∫ 1

0

∫ 1

0

ui(ai(s), si)f1(s1)f2(s2)ds1ds2

+
∑
i

∫ 1

0

∫ 1

0

(
siai(s)−

ai(s)
2

2

)
Λi(dsi, s−i)ds−i

=

∫∫ (
u0(a(s))f1(s1)f2(s2)−

∑
i

ai(s)(Λi(1, s−i)− Λi(si, s−i))
)

︸ ︷︷ ︸
A(a,s)

ds1ds2 (B.5)

+
∑
i

∫ 1

0

∫ 1

0

(
ui(ai(s), si)− κisiai(s) + κi

ai(s)
2

2

)
︸ ︷︷ ︸

Bi(a,s)

f1(s1)f2(s2)ds1ds2 (B.6)

+
∑
i

∫ 1

0

∫ 1

0

(
siai(s)−

ai(s)
2

2

)
︸ ︷︷ ︸

Ci(a,s)

(Λi(dsi, s−i) + κif−i(s−i)Fi(dsi))ds−i, (B.7)

where the second equality is obtained by simultaneously adding and subtracting the

term
∑

i

∫ 1

0

∫ 1

0

(
κisiai(si, s−i) − κi ai(si,s−i)

2

2

)
f1(s1)f2(s2)ds1ds2. For any s, A(a, s) is

concave in a because u0 is concave. Hence, the integral in (B.5) is concave in a.

For each i and s, Bi(a, s) is also concave in a by the definition of κi. Hence, the

term in (B.6) is concave in a. For any i and s, Ci(a, s) is concave in a. Because we

have already shown that Λi(si, s−i)+κif−i(s−iFi(si)) is increasing in si, Λi(dsi, s−i)+

κif−i(s−iFi(dsi)) is in fact a positive measure. Hence, the term in (B.7) is also concave

in a. Being the sum of functionals that are concave in a, L is also concave in a.
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Step 2: For every a ∈ Φ, limα→0
L(αa+(1−α)a∗)−L(a∗)

α
≤ 0.

For each a ∈ Φ, using the expression of L(a) in the previous step, we can directly

calculate the Gateaux derivative1

∂L(a) ≡ lim
α→0

L(a∗ + αa)− L(a∗)

α

=
∑
i

∫∫ (∂wi
∂ai

(a∗i (s), s)f1(s1)f2(s2)− (Λi(1, s−i)− Λi(s))
)
ai(s)ds1ds2

+
∑
i

∫∫ (
si − a∗i (s)

)
ai(s)Λi(dsi, s−i)ds−i

Recall that

Λi(1, s−i)− Λi(si, s−i) =


κiFi(si)f−i(s−i), if si ∈ [0,

¯
φi(s−i)],

∂wi
∂ai

(si, si, s−i)fi(si)f−i(s−i), if si ∈ (
¯
φi(s−i), φ̄i(s−i)),

−κi(1− Fi(si))f−i(s−i), if si ∈ [φ̄i(s−i), 1],

and

a∗i (s) =


¯
φi(s−i), if si ∈ [0,

¯
φi(s−i)],

si, if si ∈ (
¯
φi(s−i), φ̄i(s−i)),

φ̄i(s−i), if si ∈ [φ̄i(s−i), 1].

Hence, we can simplify the expression of ∂L(a) to

∂L(a)

=
∑
i

∫ 1

0

[ ∫
¯
φi(s−i)

0

(∂wi
∂ai

(
¯
φi(s−i), s)fi(si)− κiFi(si)− κi(si −

¯
φi(s−i))fi(si)

)
ai(s)dsi︸ ︷︷ ︸

`i(a,s−i)

]
dF−i

+
∑
i

∫ 1

0

[ ∫ 1

φ̄i(s−i)

(∂wi
∂ai

(φ̄i(s−i), s)fi(si) + κi(1− Fi(si))− κi(si − φ̄i(s−i))fi(si)
)
ai(s)dsi︸ ︷︷ ︸

hi(a,s−i)

]
dF−i.

1 Let f : [0, 1]2 → R be a continuously differentiable function, and µ be a finite measure over

[0, 1]2. Then,

lim
α→0

∫
[0,1]2

f(a∗(s) + αa(s))µ(ds)−
∫

[0,1]2
f(a∗(s))µ(ds)

α

=

∫
[0,1]2

lim
α→0

f(a∗(s) + αa(s))− f(a∗(s))

α
µ(ds)

=

∫
[0,1]2

(∑
i

∂f

∂ai
(a∗(s))ai(s)

)
µ(ds),

where the first equality comes from interchanging the order of limit and integration. This is guar-

anteed by the bounded convergence theorem.
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Consider `i(a, s−i) first. Using the fact that ai(s) is increasing in si, we can also

write ai(s) = ai(
¯
φi(s−i), s−i) −

∫
[si,

¯
φi(s−i))

ai(dsi, s−i). Plugging this expression into

`i(a, s−i), we obtain

`i(a, s−i)

=ai(
¯
φi(s−i), s−i)

∫
¯
φi(s−i)

0

(∂wi
∂ai

(
¯
φi(s−i), s)fi(si)− κiFi(si)− κi(si −

¯
φi(s−i))fi(si)

)
dsi

−
∫

[0,
¯
φi(s−i))

[ ∫ si

0

(∂wi
∂ai

(
¯
φi(s−i), s̃)fi(s̃i)− κiFi(s̃i)− κi(s̃i −

¯
φi(s−i))fi(s̃i)

)
ds̃i

]
ai(dsi, s−i)

=ai(
¯
φi(s−i), s−i)

∫
¯
φi(s−i)

0

∂wi
∂ai

(
¯
φi(s−i), s)fi(si)dsi

−
∫

[0,
¯
φi(s−i))

[ ∫ si

0

∂wi
∂ai

(
¯
φi(s−i), s̃)fi(s̃i)ds̃i − κi(si −

¯
φi(s−i))Fi(si)

]
ai(dsi, s−i)

=−
∫

[0,
¯
φi(s−i))

[ ∫ si

0

∂wi
∂ai

(
¯
φi(s−i), s̃)fi(s̃i)ds̃i − κi(si −

¯
φi(s−i))Fi(si)

]
ai(dsi, s−i), (B.8)

where the first equality comes from changing the order of integration. The second

equality comes from, for all si,
∫ si

0
(s̃i −

¯
φi(s−i))fi(s̃i)ds̃i = (si −

¯
φi(s−i))Fi(si) −∫ si

0
Fi(s̃i)ds̃i. The third inequality comes from

∫
¯
φi(s−i)

0
∂wi
∂ai

(
¯
φi(s−i), si, s−i)fi(si)dsi = 0

by condition C2. By condition C2 again, we know the term in the square bracket in

(B.8) is nonnegative. This implies that `i(a, s−i) ≤ 0. But notice that a∗i (si, s−i) is

constant over si ∈ [0,
¯
φi(s−i)]. Therefore, `i(a

∗, s−i) = 0.

Using a similar argument and condition C3, we can also show that hi(a, s−i) ≤ 0

and hi(a
∗, s−i) = 0. Therefore, we know ∂L(a) ≤ 0 for all a ∈ Φ and ∂L(a∗) = 0.

Finally, using a similar argument as in the calculation of ∂L(a) (see footnote 1),

we can calculate

lim
α→0

L(αa+ (1− α)a∗)− L(a∗)

α
= ∂L(a)− ∂L(a∗) ≤ 0.

Step 3: a∗ solves (B.4).

Suppose not. There exists a ∈ Φ such that L(a) > L(a∗). By concavity from

Step 1, L(αa + (1 − α)a∗) ≥ αL(a) + (1 − α)L(a∗) for all α ∈ (0, 1). Equiva-

lently, L(αa+(1−α)a∗)−L(a∗)
α

≥ L(a) − L(a∗) for all α ∈ (0, 1). Letting α go to 0 yields

limα→0
L(αa+(1−α)a∗)−L(a∗)

α
≥ L(a)− L(a∗) > 0, contradicting Step 2. Therefore, a∗ is

a solution to (B.4), completing the proof.
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Online Appendix C Proofs for Section 4

Proof of Proposition 2. We first verify that all the conditions needed in Theorem 2

are satisfied. For this, we only verify condition U1. All other conditions are straight-

forward.

We continue to use notation
¯
gi(x, s−i) and ḡi(x, s−i) defined in the proof of Lemma

3. Moreover, for notational simplicity, let λ̃i = λi
λ0

for i = 1, 2. Consider
¯
gi(x, s−i). It

is easy to calculate that

∂
¯
gi(x, s−i)

∂x
= −2

∫ x

0

λ̃iFi(si)dsi − 2Fi(x)(x− s−i),

∂2

¯
gi(x, s−i)

∂x2
= 2Fi(x)

[
fi(x)

Fi(x)
(s−i − x)− (λ̃i + 1)

]
.

When s−i = 0,
∂2

¯
gi(x,0)

∂x2 < 0 for x ∈ (0, 1]. Therefore,
¯
gi is strictly concave and

hence strictly quasi-concave. Assume s−i > 0. Let θ(x) ≡ fi(x)
Fi(x)

(s−i − x) − (λ̃i + 1).

Because fi
Fi

is decreasing by Lemma 16, θ is strictly decreasing over (0, s−i]. Because

limx↓0
fi(x)
Fi(x)

= +∞ by Lemma 16 again, we know limx↓0 θ(x) = +∞. Moreover,

because θ(s−i) < 0, we know there exists x′ ∈ (0, s−i) such that θ is positive over

(0, x′) and negative over (x′, s−i). Clearly, θ is also negative over [s−i, 1]. Therefore,

over the interval (0, 1),
∂2

¯
gi( · ,s−i)
∂x2 single-crosses the x-axis from above, implying that

¯
gi( · , s−i) is strictly quasi-concave. We can similarly show that ḡi( · , s−i) is strictly

quasi-concave.

From the proof of Lemma 3, we know that c∗i (s−i) = arg maxx∈[0,1]
¯
gi(x, s−i).

Observe that
∂
¯
gi(0,s−i)

∂x
= 0 for all s−i. When s−i = 0, the above analysis implies that

∂
¯
gi(x,s−i)

∂x
< 0 for x > 0. Therefore, c∗i (0) = 0. When si > 0, the above analysis implies

that c∗i (s−i) > 0 and satisfies the first order condition

∂
¯
gi(c

∗
i (s−i), s−i)

∂x
= −2

∫ c∗i (s−i)

0

λ̃iFi(si)dsi − 2Fi(c
∗
i (s−i))(c

∗
i (s−i)− s−i) = 0,

or equivalently

c∗i (s−i) = s−i − λ̃i
∫ c∗i (s−i)

0
Fi(si)dsi

Fi(c∗i (s−i))
< s−i. (C.1)

Similarly, we can show that d∗i (1) = 1. When s−i < 1, we have d∗i (s−i) < 1 and is

determined by

d∗i (s−i) = s−i + λ̃i

∫ 1

d∗i (s−i)
(1− Fi(si))dsi

1− Fi(d∗i (s−i))
> s−i. (C.2)

This completes the proof.
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Propositions 3 and 4 are built on the next two simple lemmas. Lemma C.1 is a

technical result about log-concavity. It strengthens some of the results in Lemma 16.

Lemma C.1. If fi is log-concave, both si 7→
∫ si

0
Fi(s

′
i)ds

′
i and si 7→

∫ 1

si
(1−Fi(s′i))ds′i

are strictly log-concave. Therefore, Fi(si)∫ si
0 Fi(s′i)ds

′
i

is strictly decreasing and 1−Fi(si)∫ 1
si

(1−Fi(s′i))ds′i
is strictly increasing.

Proof. We only show that si 7→
∫ 1

si
(1 − F (s′i))ds

′
i is strictly log-concave. The other

one is similar. Consider any si ∈ (0, 1). By part (i) in Lemma 16, we know there

exists s′′i ∈ (si, 1) such that

fi(si)

1− Fi(si)
≤ fi(s

′
i)

1− Fi(s′i)
, ∀s′i ∈ (si, 1),

with strictly inequality when s′i ∈ (s′′i , 1). This implies

fi(si)

1− Fi(si)

∫ 1

si

(1− Fi(s′i))ds′i <
∫ 1

si

fi(s
′
i)

1− Fi(s′i)
(1− Fi(s′i))ds′i = 1− Fi(si),

which in turn implies[
log

∫ 1

si

(1− Fi(s′i))ds′i
]′′

=
fi(si)

∫ 1

si
(1− Fi(s′i))ds′i − (1− Fi(si))2(∫ 1

si
(1− Fi(s′i))ds′i

)2 < 0.

Therefore,
∫ 1

si
(1− Fi(s′i))ds′i is strictly log-concave.

Lemma C.2 below shows the monotone comparative statics of agents’ unilaterally

constrained delegation rules with respect to the parameters. Denote by (c∗i,λ0,λi
, d∗i,λ0,λi

)

the unilaterally constrained delegation rule for agent i when the importance of coor-

dination is λ0 and that of his adaptation is λi.
2

Lemma C.2. For any s−i ∈ (0, 1), c∗i,λ0,λi
(s−i) is strictly increasing in λ0 and strictly

decreasing in λi; d
∗
i,λ0,λi

(s−i) is strictly decreasing in λ0 and strictly increasing in λi.

Proof of Lemma C.2. For example, assume λ̄i >
¯
λi. Pick any s−i ∈ (0, 1). For

notational simplicity, let
¯
c = c∗i,λ0,

¯
λi

(s−i) and c̄ = c∗
i,λ0,λ̄i

(s−i). By (C.1), we have

¯
c+ ¯

λi
λ0

∫
¯
c

0
Fi(si)dsi

Fi(
¯
c)

= c̄+
λ̄i
λ0

∫ c̄
0
Fi(si)dsi

Fi(c̄)
> c̄+ ¯

λi
λ0

∫ c̄
0
Fi(si)dsi

Fi(c̄)
.

2The unilaterally constrained delegation rule for agent i does not depend on the importance of

agent −i’s adaptation.
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Because c 7→ c + ¯
λi
λ0

∫ c
0 Fi(si)dsi
Fi(c)

is strictly increasing by Lemma C.1, we know
¯
c > c̄.

This proves that c∗i,λ0,λi
(s−i) is strictly decreasing in λi. The same argument can be

applied to show that c∗i,λ0,λi
(s−i) is strictly increasing in λ0. The proof for d∗i,λ0,λi

is

analogous.

Proof of Proposition 3. Let (φ∗1,λ0
, φ∗2,λ0

) be the principal’s optimal contingent dele-

gation when the importance of coordination to her is λ0. For any s−i, We show that

¯
φ∗i,λ0

(s−i) is increasing while φ̄∗i,λ0
(s−i) is decreasing in λ0, for both i = 1, 2. For no-

tational simplicity, we suppress λi from the previous notation c∗i,λ0,λi
and d∗i,λ0,λi

, and

directly write c∗i,λ0
and d∗i,λ0

.

Consider 0 <
¯
λ0 < λ̄0 < ∞. We show φ̄∗

1,λ̄0
≤ φ̄∗1,

¯
λ0

and
¯
φ∗

2,λ̄0
≥

¯
φ∗2,

¯
λ0

. The

proof is most easily understood by looking at Figure C.1. Let (L̄1,λ0 , ¯
H2,λ0) be the

intersection of d∗1,λ0
and c∗2,λ0

for λ0 ∈ {
¯
λ0, λ̄0}. By Lemma C.2, we know d∗

1,λ̄0
≤ d∗1,

¯
λ0

and c∗
2,λ̄0
≥ c∗2,

¯
λ0

. Hence in Figure C.1, (L̄1,
¯
λ0 , ¯

H2,
¯
λ0) can only appear in one of the

regions i, i, or iii .

c∗
2,λ̄0

d∗
1,λ̄0

L̄1,λ̄0

¯
H2,λ̄0

i

ii

iii

Figure C.1: Graph for the proof of Proposition 3

We claim that, in fact, (L̄1,
¯
λ0 , ¯

H2,
¯
λ0) can only be in region iii. To see this, note

that c∗2,λ0
(d∗1,λ0

(
¯
H2,λ0)) =

¯
H2,λ0 , for λ0 ∈ {

¯
λ0, λ̄0}. Using (C.1), (C.2), and the fact

d∗1,λ0
(
¯
H2,λ0) =

¯
L1,λ0 , we know

0 =
λ2

¯
λ0

∫ 1

L̄1,
¯
λ0

(1− F1(s1))ds1

1− F1(L̄1,
¯
λ0)

− λ1

¯
λ0

∫
¯
H2,

¯
λ0

0 F2(s2)ds2

F2(
¯
H2,

¯
λ0)

=
λ2

λ̄0

∫ 1

L̄1,λ̄0

(1− F1(s1))ds1

1− F1(L̄1,λ̄0
)

− λ1

λ̄0

∫
¯
H2,λ̄0
0 F2(s2)ds2

F2(
¯
H2,λ̄0

)
.
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Because x 7→
∫ 1
x (1−F1(s1))ds1

1−F1(x)
is strictly decreasing and x 7→

∫ x
0 F2(s2)ds2
F2(x)

is strictly in-

creasing by Lemma C.1, it is easy to see from the above equation that we can have

neither L̄1,
¯
λ0 ≤ L̄1,λ̄0

and
¯
H2,

¯
λ0 < ¯

H2,λ̄0
, nor L̄1,

¯
λ0 > L̄1,λ̄0

and
¯
H2,

¯
λ0 ≥ H̄2,

¯
λ0 . In other

words, (L̄1,
¯
λ0 , ¯

H2,
¯
λ0) can be in neither region i nor region ii.

Therefore, (L̄1,
¯
λ0 , ¯

H2,
¯
λ0) is in region iii. Equivalently, L̄1,

¯
λ0 ≥ L̄1,λ̄0

and
¯
H2,

¯
λ0 ≤

¯
H2,λ̄0

. For any s2 ∈ [0, 1), we then have

φ̄∗1,
¯
λ0

(s1) = max{d∗1,
¯
λ0

(s1), L̄1,
¯
λ0} ≥ max{d∗1,λ̄0

(s1), L̄1,λ̄0
} = φ̄∗1,λ̄0

(s1).

Similarly, for any s1 ∈ (0, 1], we have

¯
φ∗2,

¯
λ0

(s2) = min{c∗2,
¯
λ0

(s2),
¯
H2,

¯
λ0} ≤ min{c∗2,λ̄0

(s2),
¯
H2,λ̄0

} =
¯
φ∗2,λ̄0

(s2).

Figure C.2 gives an illustration.

c∗
1,λ̄0

d∗
1,λ̄0

c∗1,
¯
λ0

d∗1,
¯
λ0

c
∗
2,̄λ

0

d
∗
2,̄λ

0

c∗2, ¯λ
0

d
∗
2, ¯
λ0

(a) (c∗i , d
∗
i )

¯
φ∗

1,λ̄0

¯
φ∗1,

¯
λ0

φ̄∗
1,λ̄0

φ̄∗1,
¯
λ0

(b) φ∗1

φ̄∗
2,λ̄0

¯
φ∗

2,λ̄0

φ̄∗2,
¯
λ0

¯
φ∗2,

¯
λ0

(c) φ∗2

Figure C.2: Importance of coordination and optimal discretion: λ̄0 >
¯
λ0

Proof of Proposition 4. It is a direct implication of Lemma C.2. See Figure C.3 for

an illustration.

Proposition 5 is a direct implication of Lemma C.3 below. Denote by (c∗i,fi , d
∗
i,fi

)

i’s unilaterally coordinated delegation rule when his state distribution is fi.

Lemma C.3. Suppose 0 < λi < ∞. Consider two densities
¯
fi and f̄i of agent i’s

state distribution. If the likelihood ratio f̄i/
¯
fi is (strictly) increasing, then c

∗
i,f̄i

(s−i) ≥
(>) c∗i,

¯
fi

(s−i) and d∗
i,f̄i

(s−i) ≥ (>) d∗i,
¯
fi

(s−i) for all s−i ∈ (0, 1).

Proof of Lemma C.3. Let F̄i and
¯
Fi be the c.d.f’s of f̄i and

¯
fi respectively. Because

f̄i and
¯
fi satisfy the (strict) MLRP, we know that, for all c, d ∈ (0, 1),3∫ c

0
F̄i(si)dsi

F̄i(c)
≤ (<)

∫ c
0 ¯
Fi(si)dsi

¯
Fi(c)

and

∫ 1

d
(1− F̄i(si))dsi
1− F̄i(si)

≥ (>)

∫ 1

d
(1−

¯
Fi(si))dsi

1−
¯
Fi(si)

.

3See, for example, Theorem 1.C.1 in Shaked and Shanthikumar (2007).
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c∗1

d∗1

c∗2,
¯
λ2

d∗2,
¯
λ2

c∗
2,λ̄2

d∗
2,λ̄2

(a) (c∗i , d
∗
i )

¯
φ∗1,

¯
λ2

¯
φ∗

1,λ̄2

φ̄∗1,
¯
λ2

φ̄∗
1,λ̄2

(b) φ∗1

¯
φ∗2,

¯
λ2

φ̄∗2,
¯
λ2

¯
φ∗

2,λ̄2

φ̄∗
2,λ̄2

(c) φ∗2

Figure C.3: Relative importance and optimal discretion: λ̄2 >
¯
λ2

Consider s−i ∈ (0, 1). Let
¯
c = c∗i,

¯
fi

(s−i) and c̄ = c∗
i,f̄i

(s−i). By (C.1), we have

¯
c+

λi
λ0

∫
¯
c

0 ¯
Fi(si)dsi

¯
Fi(

¯
c)

= c̄+
λi
λ0

∫ c̄
0
F̄i(si)dsi

F̄i(c̄)
≤ (<) c̄+

λi
λ0

∫ c̄
0 ¯
Fi(si)dsi

¯
Fi(c̄)

.

Again, because c 7→ c+ λi
λ0

∫ c
0 ¯
Fi(si)dsi

¯
Fi(c)

is strictly increasing, we know
¯
c ≤ (<) c̄. Figure

C.4 provides an illustration.

c∗1

d∗1

c∗2,
¯
f2

d∗2,
¯
f2

c∗
2,f̄2

d∗
2,f̄2

(a) (c∗i , d
∗
i )

¯
φ∗1,

¯
f2

¯
φ∗

1,f̄2

φ̄∗
1,f̄2

φ̄∗1,
¯
f2

(b) φ∗1

¯
φ∗

2,f̄2

φ̄∗2,
¯
f2

¯
φ∗2,

¯
f2

φ̄∗
2,f̄2

(c) φ∗2

Figure C.4: State distribution and optimal discretion: f̄2/
¯
f2 is increasing
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