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Abstract

We study information disclosure as a policy tool to minimize welfare losses in epidemics through mit-
igating healthcare congestion. We present a stylized model of a healthcare congestion game to show that 
congestion occurs when individuals expect the disease to be sufficiently severe and this leads to misalloca-
tion of scarce healthcare resources. Compared to full disclosure, under which congestion occurs when the 
true severity level surpasses the exhaustion level, a censorship policy, which pools the true severity levels 
around this exhaustion level and fully reveals all other severity levels, helps to reduce congestion and is 
welfare improving. Under mild conditions, we show that such a policy is indeed optimal. We further show 
that this insight is robust to considering partially effective pre-screening and limited information leakage.
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1. Introduction

In an epidemic, healthcare resources (e.g., ventilators, ICU beds and healthcare workers) are 
scarce and, what is worse, limited resources may not be used efficiently. The surging demand for 
care often leads to healthcare congestion, which can have significant welfare consequences. As 
we have seen in the COVID-19 outbreak, government policies to fight the epidemic are targeted 
mainly at reducing hospital congestion (i.e., by “flattening the curve”).

Another distinctive feature of an epidemic is the shortage of information. Information about 
the novel virus, such as its modes of transmission and the severity of the disease, is difficult 
to obtain. At the early stage of an epidemic outbreak, the general populace relies on public 
authorities for that information. Existing studies confirm that public information disclosure about 
the severity of the disease and recommendations for social distancing have been effective in 
shaping individuals’ beliefs and behaviors during COVID-19 outbreak, thereby determining the 
ultimate welfare consequences of the epidemic.1

What role does information disclosure play in healthcare congestion? Is full disclosure al-
ways the best disclosure policy in terms of protecting the interests of the general public? If not, 
what would be the benefits of coarse information disclosure, and what is the optimal choice for 
government authorities?

This paper addresses these questions. We construct a stylized model to understand the reasons 
for the congestion in the healthcare system and its welfare consequences. In our model, the 
healthcare system has a capacity constraint and can offer only a limited number of hospital 
admissions. However, a large number of agents are susceptible to the virus but may not know if 
they are infected and, even if they are, whether the infection will develop into serious symptoms 
that necessitate hospitalization. If that happens, then without hospital care, the agent will bear a 
cost. This common cost s, referred to as the severity of the disease, represents the underlying state
of the economy.2 This cost can be avoided only if the agent goes to the hospital and is admitted 
for care. Uncertain about how severe the disease could be, each agent chooses whether to visit 
the hospital based on the common belief about the disease’s severity and the private likelihood 
that hospitalization is needed.

Congestion occurs if the total number of hospital visits exceeds the healthcare system’s fixed 
capacity. At the early stage of an epidemic, due to the lack of knowledge about the novel virus, 
the healthcare sector does not have an effective means to pre-screen visitors. We assume that, 
in congestion, a hospital randomly admits the visitors up to its capacity. A critical feature of 
the congestion game is that one agent’s hospital visit imposes congestion externalities on others, 
because that visit lowers others’ chances of admission during congestion.

We solve for the unique equilibrium, in which each agent chooses to pay a fixed cost to visit 
the hospital if and only if the private likelihood that hospitalization will be needed surpasses a 
threshold. This threshold is determined by the expected severity level, s̃. When the disease is 
expected to be more severe, the threshold decreases and more agents choose to visit the hospital. 
Therefore, congestion occurs only if s̃ exceeds a cutoff level, s0, which we refer to as the ex-
haustion level. Whenever congestion occurs, those unlikely to need hospitalization get access to 
hospital care, while some agents that are likely to need hospitalization are not admitted. This mis-
allocation of healthcare resources, together with the wasted visiting costs, defines the efficiency 
loss associated with congestion.

1 For details, see, among others, Simonov et al. (2020), Bursztyn et al. (2020), and Allcott et al. (2020)).
2 One interpretation of the disease’s severity is the expected mortality rate caused by this infectious disease.
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Next, we introduce a principal who can commit to a public disclosure policy and whose goal 
is to maximize social welfare. Such a policy determines the expected severity level s̃ for any true 
disease severity s. Clearly, congestion externality is the underlying reason for such a policy in-
tervention. If there were no congestion, then private decision making would be socially efficient, 
and, thus, it would be optimal for the principal to adopt a full disclosure policy.

In the presence of congestion externality, an information disclosure policy improves total 
welfare only if it can alleviate congestion. For true severity level s > s0, if the disclosure policy 
is able to induce a posterior belief, under which the expected severity level is exactly s0, then 
the congestion externalities would be corrected, and the ex-post efficiency would be achieved 
without congestion. However, rational agents would form that expectation only if the principal 
also reports s0 at some severity levels lower than the exhaustion level s0. The principal can always 
accomplish this by committing to the disclosure policy that reports s0 to the agents whenever the 
true severity level s appears in an interval [s−, s+] around s0 whose conditional mean is s0.

The welfare gain from pooling states in [s−, s+] stems from avoiding congestion when 
s ∈ (s0, s+]. On the other hand, for s ∈ [s−, s0), this exaggerates the disease severity and, there-
fore, distorts the agents’ decision making. However, such distortion never results in congestion. 
We prove that the welfare losses caused by this distortion are dominated by the welfare gain 
from avoiding congestion, provided that the interval [s−, s+] is properly chosen. As such, full 
disclosure is never an optimal policy.

We fully characterize an optimal disclosure policy, assuming that the distribution of the like-
lihood of agents’ needs for hospitalization has an increasing hazard rate. This optimal policy 
pushes the above-discussed intuition to the limit by identifying the largest interval [s−, s+] that 
fully exploits the benefit from avoiding congestion. We can interpret this optimal disclosure pol-
icy as a simple censorship rule. This policy censors all the states s between s− and s+, while 
fully revealing all other states. Depending on the parameters, it may be a middle censorship rule 
that censors only a strict intermediate range of states, or an upper censorship rule that censors 
all states above s−.3 Under the optimal policy, congestion never occurs when information is cen-
sored. For any true severity level s ∈ (s0, s+], since the censorship rule induces a posterior belief 
s̃ = s0, it enables the healthcare system to run efficiently at its full capacity without congestion. 
Further, we show that this middle censorship rule is essentially the unique optimal disclosure 
policy.4

In the ongoing COVID outbreak, hospital congestion significantly threatens the efficiency 
of the healthcare system; meanwhile, the general public demands information transparency. Our 
model demonstrates that disclosure policy, if properly designed, can be an effective tool to allevi-
ate healthcare congestion. From an ex-ante perspective, not revealing the disease’s true severity, 
but pooling the severity levels around the exhaustion level, can in fact work to protect the inter-
ests of all agents. To examine the robustness of this simple idea, we further extend our benchmark 
model to investigate the cases with partially effective pre-screening and with limited information 
leakage. Our analyses confirm that this insight is largely robust to these considerations.

3 The lower bound of the censoring range s− is always strictly higher than the lowest possible severity level 0.
4 Other optimal policies differ only in the states in which visiting the hospital is a strictly dominated strategy, as the 

cost is strictly higher than the benefit, regardless of what others do. Pooling those states together does not change the 
allocation of healthcare resources or ex-ante welfare. The middle censorship policy is, in fact, the most informative of all 
optimal policies. See Proposition 4 for details.
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Related literature This paper contributes to a broader literature on policy interventions in epi-
demics. A recent growing economics literature looks at policy analysis within the SIR or SEIR 
framework (e.g., Acemoglu et al. (2020), Atkeson (2020), Alvarez et al. (2020), Eichenbaum et 
al. (2021), Fajgelbaum et al. (2021) and Jones et al. (2021)). This strand of the literature em-
phasizes the impact of lockdown and quarantine policies on contagion dynamics. The focus of 
our paper is different. We construct a model to rationalize hospital congestion and link that to 
agents’ information and beliefs. In this sense, we provide a micro-foundation for the congestion 
externality usually taken as given in macroeconomic models.5 In addition, we investigate how an 
information disclosure policy can be adopted to reduce healthcare congestion.

Our paper is also related to the literature on how to use limited or costly testing to extract 
as much information (regarding infection) as possible. For example, Deb et al. (2020) consider 
the method of targeted testing and targeted transfers to compensate for limited testing; Ely et al. 
(2021) study the optimal allocation of tests with different sensitivities and specificities among 
agents with differing infection risk; Lipnowski and Ravid (2021) investigate the optimal design 
for testing a pooled sample. In an extension of our baseline model, we consider pre-screening, 
which may include, but is not limited to, testing. Pre-screening produces useful results to distin-
guish between agents with different needs for hospitalization and to inform hospital admission 
decisions. To focus our attention on the disclosure policy about the common disease severity, we 
take pre-screening as exogenous and discuss how its precision can change the optimal disclosure 
policy.6

In terms of methodology, we apply the information design approach, initiated by Rayo and 
Segal (2010) and Kamenica and Gentzkow (2011), to the healthcare congestion problem in epi-
demics. The information design problem we consider features a group of agents with differing 
needs for hospitalization, who play a congestion game with strategic substitution, and a benev-
olent principal who chooses the information structure on a continuous state space to address 
congestion externality and restore efficiency.7 Under mild conditions, we clearly characterize the 
properties of the principal’s objective function, which endogenously arises from the healthcare 
congestion game. Given these properties, we apply the method in Dworczak and Martini (2019)
and identify the optimal disclosure policy.

Disclosure policies involving various kinds of censorship rules have proven to be optimal in 
different economic contexts.8 For example, in a recent work, Kolotilin et al. (2019) show that an 
upper censorship rule is optimal for all distributions of state if and only if the designer’s indirect 
utility function is convex below some threshold and concave above that threshold, i.e., S-shaped. 
In our analysis, we find that the principal’s indirect utility function is a piecewise convex function 
with a kink, i.e., W -shaped. Therefore, middle censorship can arise as an optimal policy.

Structure The rest of the paper is organized as follows. Section 2 presents the benchmark model 
of healthcare congestion. In Section 3, we set up the information disclosure problem and solve 
for the optimal disclosure policy. Section 4 discusses the robustness of our results, and Section 5

5 See, for example, Berger et al. (2020) and Jones et al. (2021).
6 See Section 4.1 for details.
7 Another related paper is Das et al. (2017). In a quite different setup, they investigate the optimal information structure 

in traffic networks to reduce road congestion.
8 For example, see Alonso and Câmara (2016) for voting, Goldstein and Leitner (2018) for banks’ risk sharing, 

Gehlbach and Sonin (2014) and Ginzburg (2019) for media control, Inostroza and Pavan (2020) for regime change, 
and Zapechelnyuk (2020) for quality control.
4
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concludes the paper. Proofs are relegated to the Appendix. All missing proofs can be found in 
the online appendix.

2. A simple model of healthcare congestion

In this section, we develop a stylized model of healthcare congestion. We model scarce public 
healthcare resources as the limited number of treatments and intensive care the healthcare system 
can provide. We focus on the strategic behavior of demanding public healthcare resource and link 
that to individual beliefs about the disease. This simple model helps us understand the causes 
of healthcare congestion, as well as its welfare consequences. It serves as the baseline for the 
information design problem in the next section.

2.1. Benchmark model

There is a unit mass of risk-neutral agents, indexed by i ∈ [0, 1]. During an epidemic, they are 
susceptible to the spread of a virus. The agents worry that a possible infection can lead to serious 
symptoms, requiring the treatment and intensive care provided by a hospital. Each agent decides 
whether or not to visit the hospital. Let ai ∈ [0, 1] denote the probability that agent i visits a 
hospital, and n = ∫

i∈[0,1] aidi denote the total number of hospital visits.

Limited capacity and congestion The capacity of the healthcare system, such as the number of 
doctors, ICU beds, and ventilators, is limited. We assume that the healthcare system can, at most, 
provide hospital care to n̄ ∈ (0, 1) visitors. When the total number of agents seeking admission 
is no greater than this capacity (i.e., n ≤ n̄), everyone will be admitted to the hospital. Only if an 
agent is admitted will they receive a comprehensive diagnosis about whether they are infected and 
if so, whether they will experience serious enough symptoms that require hospital care. When the 
total number of visitors exceeds hospital capacity (i.e., n > n̄), congestion occurs. In this case, 
visitors will be randomly admitted, and, thus, each one will be admitted with probability n̄

n
.

We make this assumption to match the observation that, at the early stage of the epidemic, 
there is very little precise knowledge about the novel virus. Due to this lack of knowledge, the 
hospital does not have the reliable means to decide which patients will soon experience serious 
or even life-threatening symptoms.9 In this case, hospital admissions are on a first-come, first-
served basis, which can be taken as random admissions in our static setting.10 Therefore, given 
the total number of visitors n, we can concisely write the probability of admission as

p(n, n̄) = min

{
1,

n̄

n

}
.

Agent’s type Agents are uncertain about whether they are infected and if they are, whether the 
infection will soon escalate to serious symptoms. Specifically, each agent i has private informa-
tion about the likelihood that they require hospital care. This likelihood, or the agent’s type, is 

9 It is worth noting that, as we focus on the strategic hospital visits, we do not consider agents with life-threatening 
symptoms. For these agents, going to the hospital is a non-strategic choice, which never depends on hospital congestion 
or their beliefs about the severity of the disease. Moreover, the hospital will be able to identify those with life-threatening 
symptoms and give them priority for admission.
10 In Section 4.1, we extend the benchmark model to consider a partially effective pre-screening protocol that is adopted 
for admission.
5
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denoted by qi ∈ [0, 1].11 Let H : [0, 1] → [0, 1] be the cumulative distribution function of this 
qi . We assume that it is common across all agents. By the law of large numbers, the distribution 
of this likelihood across the population is also H . Throughout the paper, we assume that H has 
a continuous and strictly positive density, h.

Severity of the disease We use s ∈ S ≡ [0, ̄s] to denote the severity of the disease; that is, 
the payoff loss to any agent when they experience serious symptoms without hospitalization. 
Equivalently, s measures the welfare loss when hospital care is needed but that demand is not 
met.12 The value of s is common to all the agents. Given the novelty of the virus, agents do 
not have precise information about the value of s. Rather, they rely on public disclosure to learn 
about s, and have a posterior belief that is characterized by the expected severity level s̃ ∈ S . 
In this section, we solve the agents’ problem for any given expected severity level s̃. We will 
explore the optimal disclosure policy about the severity s in the next section.

Payoffs For a hospital visit, each agent must pay a fixed cost c. The cost can be interpreted, 
for instance, as the opportunity cost of the time spent on one’s visit, the costs associated with 
transportation and making an appointment, and so on. For simplicity, we assume that this cost is 
identical across all agents.

In addition, each agent’s payoff depends on whether he indeed needs hospitalization and 
whether he receives hospital care if he needs it. If an agent does not need hospitalization ex-post, 
their payoff, net of the visiting cost, is normalized to 0. This is independent of their decision to 
visit the hospital.13 If an agent is infected and has serious symptoms that necessitate hospitaliza-
tion ex-post, they will receive such care only if they choose to visit the hospital and are admitted. 
In this case, they will receive intensive care and necessary treatment so that the welfare loss s
will not materialize. For that reason, their payoff, net of the visiting cost, is also 0.14 If an agent 
indeed needs hospital care but does not receive it, their welfare loss is s. This can occur either 
because they do not go to the hospital in the first place or they are not admitted due to congestion. 
Table 1 summarizes each agent’s ex-post payoff.

For any given likelihood qi , the expected severity level, s̃, and the number of hospital visits, 
n, agent i’s expected payoff from their decision ai can be written as

vi(ai;qi, s̃, n) ≡ ai(−c − qi(1 − p(n, n̄))s̃) + (1 − ai)(−qi s̃). (1)

Because p(n, n̄) is decreasing and is strictly so when n > n̄, agents’ hospital visits create a 
negative externality on others’ payoffs. We refer to this as congestion externality. This happens 

11 We view this private information as follows. Each agent has a binary prior belief about whether or not they are infected 
and will experience some serious symptoms that necessitate hospitalization. In addition, each agent also observes a 
private noisy signal about this. The source of such private information can be their past travel history, some mild common 
symptoms (e.g., fever, cough, or headache) they currently experiences, their health condition, and medical history. With 
this private signal, an agent forms their posterior belief and believes that they need hospital care with probability qi .
12 One can also interpret s as the expected welfare loss to any agent who needs hospital care but does not receive 
it, which is determined by the mortality rate of this disease. In that case, the government’s disclosure about s can be 
understood as revealing the (historical) mortality rate of this disease.
13 Even if an agent who does not need hospital care gets admitted to the hospital, they will be discharged soon after they 
receive a comprehensive diagnosis, and, for that reason, no additional costs will be occurred.
14 We adopt this assumption for simplicity. Alternatively, one can assume that an agent who needs hospital care will 
recover only with some probability if they are admitted to the hospital. Or, there is an additional medical cost to any 
agent who needs hospital care and receives it. None of these alternative assumptions will change our results qualitatively.
6
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Table 1
Ex-post payoff.

Hospital care is not needed Hospital care is needed

not visit the hospital 0 −s

visit
admitted −c −c

not admitted −c −c − s

precisely because of the limited capacity of the healthcare system. Consequently, agents’ deci-
sions about hospital visits are strategic substitutes. Conditional on there being congestion, an 
agent’s incentive to go to a hospital decreases when others are more likely to go.

2.2. Equilibrium

All agents simultaneously and independently decide whether to visit the hospital, given their 
type, qi , and the public belief, s̃. A strategy for agent i is a mapping ai( · ; ̃s) : [0, 1] → [0, 1]. 
A Bayesian Nash equilibrium requires that (i) given the total number of hospital visits n(s̃), the 
hospital visit decision of every type of agent will be optimal:

a∗
i (qi; s̃) ∈ arg max

ai∈[0,1]
vi(ai;qi, s̃, n(s̃)), ∀qi ∈ [0,1]; (2)

and (ii) agents’ decisions in turn determine the total number of hospital visits:

n(s̃) =
1∫

0

⎛
⎝ 1∫

0

a∗
i (q; s̃)dH(q)

⎞
⎠di. (3)

The following proposition fully characterizes the unique Bayesian Nash equilibrium.

Proposition 1. For any expected severity level s̃ > 0, there is a unique Bayesian Nash equilib-
rium. In this equilibrium, agents play a symmetric cutoff strategy:

a∗(qi; s̃) =
{

1, if qi ≥ H−1(1 − n(s̃)),

0, if qi < H−1(1 − n(s̃)),
(4)

where the total number of hospital visits n(s̃) satisfies

n(s̃) =
{

0, if 0̃ ≤ s̃ ≤ c,

1 − H
(

c
s̃

)
, if c < s̃ ≤ c

H−1(1−n̄)
,

(5)

and is the unique solution to

n(s̃) = 1 − H

(
cn(s̃)

s̃n̄

)
(6)

if s̃ > c
H−1(1−n̄)

. Congestion occurs if and only if s̃ > c
H−1(1−n̄)

.

Given the strategies taken by others and, thus, the total number of visits n(s̃), an agent with 
type qi visits the hospital if their expected payoff from visiting exceeds that from not visiting 
7
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—i.e., −c − qi(1 − p(n(s̃), n̄))s̃ ≥ −qi s̃, or, equivalently, qi ≥ c
p(n(s̃),n̄)s̃

≡ β(s̃). This, in turn, 
implies that the total number of visits is

n(s̃) = 1 − H(β(s̃)) = 1 − H

(
c

p(n(s̃), n̄)s̃

)
. (7)

From this equation, we can write the cutoff β(s̃) as H−1(1 − n(s̃)), as stated in (4). Equations 
(5) and (6) give a full characterization of the solution n(s̃) to (7).

To understand (5) and (6), it is helpful to think about the extreme case with n̄ = 1 as a refer-
ence. In this case, hospital congestion never happens. An agent with type qi visits the hospital 
only if their expected payoff from visiting exceeds that from not visiting: −c ≥ −qi s̃. When 
s̃ ≤ c, the severity of the disease is very mild in expectation so that no one chooses to visit. Oth-
erwise, when s̃ > c, visiting is optimal only if the likelihood that hospital care is needed exceeds 
c
s̃
. In this case, the total number of visits is 1 − H(c

s̃
).

Now, consider the case in which there is a capacity constraint n̄ < 1. When 1 − H(c
s̃
) ≤ n̄, 

or, equivalently, s̃ ≤ c
H−1(1−n̄)

, each agent simply behaves the same as they would in the case 
with unlimited capacity, because congestion will not occur given that all others behave in this 
way. Therefore, the equilibrium number of visits is n(s̃) = 0 if s̃ ≤ c, and n(s̃) = 1 − H(c

s̃
) if 

c < s̃ ≤ c
H−1(1−n̄)

, as (5) claims.

However, when 1 −H(c
s̃
) > n̄, or, equivalently, s̃ > c

H−1(1−n̄)
, the situation becomes different. 

If the agents still behave as if there were unlimited capacity, then the total number of visitors 
would exceed n̄. In this case, congestion would take place, and each visitor’s probability of 
admission would be strictly lower than 1. This, in turn, lowers each agent’s incentive to visit. 
Indeed, an agent with type qi will visit the hospital if qi >

cn(s̃)
s̃n̄

since the probability of admission 
now is only n̄

n(s̃)
. Therefore, the equilibrium total number of visitors must satisfy (6).

In summary, the equilibrium number of hospital visits is increasing as the public belief in-
creases. In equilibrium, congestion occurs only when the agents’ belief exceeds s0 ≡ c

H−1(1−n̄)
. 

We refer to s0 as the exhaustion level. This is the public belief, under which all health care 
resources are exhausted in equilibrium.

2.3. Total welfare

Next, to understand the welfare consequences of congestion, we calculate the equilibrium 
total welfare based on Proposition 1. This is the aggregated equilibrium payoff of the population.

Lemma 1. Suppose that the true severity level is s and the public belief is s̃. In the unique 
Bayesian Nash equilibrium, the ex-post total welfare of this economy is

U(s̃, s) ≡ −sEq − cn(s̃) + s min{n(s̃), n̄}E(q|q ≥ β(s̃)). (8)

As shown in (8), the total welfare U(s̃, s) has three components. The first component, −sEq , 
is the total welfare loss if no hospitalization is provided. The second component, −cn(s̃), repre-
sents the total cost of hospital visits. The last component, s min{n(s̃), n̄}E(q|q ≥ β(s̃)), measures 
the welfare gain achieved due to hospital care.

The next proposition, which analyzes how the public belief affects the total welfare of this 
economy, provides intuition for our later results.
8



J. Hu and Z. Zhou Journal of Economic Theory 202 (2022) 105469
Proposition 2. For any true severity level s, the expected severity level that achieves ex-post 
efficiency is

s̃ =

⎧⎪⎨
⎪⎩

any value in [0, c], if s ≤ c;
s, if s ∈ (c, s0];
s0, if s > s0.

The result should be intuitive. When the disease is very mild —i.e., s ≤ c— the cost of a 
hospital visit outweighs the benefit. Thus, ex-post efficiency requires that there is no hospital 
visit. This outcome can be achieved under any s̃ ≤ c since n(s̃) = 0 according to Proposition 1.

When s > c, in the absence of limited hospital capacity, those agents with type qi ≥ c
s

should 
go to the hospital since their benefit qis from doing so outweighs the cost c. In the presence of 
capacity constraint, there are two cases. First, if s ∈ (c, s0], then ex-post efficiency requires that 
all of these agents visit the hospital, since the hospital can accommodate them all and congestion 
will not occur. This outcome is achieved only if s̃ = s. If s̃ < s (or s̃ > s), there will be wel-
fare loss in equilibrium due to too few (or too many) hospital visits. Second, if s > s0, ex-post 
efficiency requires that only those agents with qi ≥ c

s0
, instead of those with qi ≥ c

s
, visit. This 

efficient outcome can be achieved by s̃ = s0. To gain some intuition, notice that while the hospi-
tal runs exactly at full capacity if agents with qi ≥ c

s0
visit, congestion will occur if agents with 

qi ≥ c
s

do so. In terms of welfare, congestion results in two sources of welfare loss. On the one 
hand, this leads to the misallocation of healthcare resources because, when there is congestion, 
not all of the limited resources are allocated to those who need them most. On the other hand, 
congestion also leads to unnecessary expenditures on hospital visits because more agents go to 
the hospital than can be accommodated.

3. Information disclosure

3.1. The principal’s problem

In the previous section, we analyzed a model of hospital congestion, taking agents’ beliefs 
about the true severity level of the disease as exogenously given. The equilibrium and welfare 
analysis in Propositions 1 and 2 revealed how their beliefs shape their decisions of hospital 
visits and affect total welfare. Because rational agents form their beliefs based on all relevant 
information, in this section, we endogenize their beliefs by analyzing information disclosure 
about the true severity level. Our goal is to understand what disclosure policy is ex-ante welfare-
maximizing.

Specifically, we introduce to the model a benevolent principal, whose objective is to maximize 
the total welfare of this economy. She does not observe each agent’s private type, but she can 
commit to a public information disclosure policy with regard to the true severity level, s.15

15 In reality, the rule of information disclosure during a national or public health emergency is often governed by 
laws, and, we believe, in that way, the ex-ante commitment can be granted to some extent. For example, in the 
U.S., “states have also enacted reporting requirements beyond specific diseases that indicate a public health threat. 
These laws vary in coverage and detail.” See “Public Health Collection, Use, Sharing, and Protection of Informa-
tion,” 2012, available at: http://www.astho .org /Programs /Preparedness /Public -Health -Emergency -Law /Public -Health -
and -Information -Sharing -Toolkit /Collection -Use -Sharing -and -Protection -Issue -Brief/.
9
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We assume that it is common knowledge that the severity level, s, is distributed according to 
a continuous and strictly increasing cumulative distribution function, G, over the interval [0, ̄s]. 
We also assume that s̄ > s0, to avoid the trivial case of no congestion.16 A disclosure policy is 
a random variable that is arbitrarily correlated with the true severity level, s. Every disclosure 
policy induces a joint distribution of the true severity level, s, and the public belief, s̃, which is 
the posterior mean. This joint distribution, in turn, determines the ex-ante expected total welfare

ẼU(s̃, s) = Ẽ
[
−sEq − cn(s̃) + s min{n(s̃), n̄}E(q|q ≥ β(s̃))

]
= −ẼsEq + Ẽ

[
−cn(s̃) + s̃ min{n(s̃), n̄}E(q|q ≥ β(s̃))

]
, (9)

where Ẽ is with respect to the joint distribution of s and s̃. The second equality comes from the 
fact that Ẽ(s|s̃) = s̃. The first term in (9), −ẼsEq , is the expected welfare loss caused by the 
disease if there were no healthcare system. This is determined solely by G and is independent of 
the disclosure policy. For the second term, let

V (s̃) ≡ −cn(s̃) + s̃ min{n(s̃), n̄}E(q|q ≥ β(s̃)). (10)

This represents the conditional value of the healthcare system, given any public belief s̃. The 
principal’s problem is then to design a disclosure policy to maximize ẼV (s̃), which depends only 
on the marginal distribution of the public belief s̃. It is well known that there exists a disclosure 
policy that induces a distribution G̃ of the public belief s̃ if and only if G̃ is a mean-preserving 
contraction (MPC hereafter) of distribution G.17 For instance, G is an MPC of itself, which is the 
distribution of s̃ under full information disclosure. We can then formulate the principal’s problem 
as choosing an MPC of distribution G to maximize the expected value of the healthcare system:

max
G̃

s̄∫
0

V (s̃)dG̃(s̃)

s.t. G̃ is a mean-preserving contraction of G.

(11)

With slight abuse of terminology, we also refer to any G̃ that is an MPC of G as a disclosure 
policy.18

3.2. Optimal disclosure policy

The following proposition presents our main result. First, full information disclosure can never 
be an optimal policy. Second, for the class of h distributions with increasing hazard rate, the 
principal’s optimal disclosure policy is a simple censorship rule.19

Proposition 3. Full information disclosure is not optimal. Moreover, if h is differentiable and has 
an increasing hazard rate, then there exists 0 < s− < s0 < s+ ≤ s̄ with EG(s|s− ≤ s ≤ s+) = s0
such that the following disclosure policy is optimal:

16 If s̄ ≤ s0, then full information disclosure is optimal according to Proposition 2.
17 See, for instance, Blackwell (1951), Gentzkow and Kamenica (2016), Kolotilin (2018) and Dworczak and Martini 
(2019). Distribution G̃ is an MPC of G if 

∫ s
0 G̃(s̃)ds̃ ≤ ∫ s

0 G(s̃)ds for all s ∈ [0, ̄s] and 
∫ s̄

0 s̃dG̃(s̃) = ∫ s̄
0 s̃dG(s̃).

18 Hence, we regard as identical disclosure policies those that induce the same distribution of s̃ .
19 Recall that h has an increasing hazard rate if h is increasing. It is equivalent to log-concavity of 1 − H .
1−H

10
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G̃∗(s̃) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G(s̃), if 0 ≤ s̃ < s−,

G(s−), if s− ≤ s̃ < s0,

G(s+), if s0 ≤ s̃ < s+,

G(s̃), if s+ ≤ s̃ ≤ s̄.

(12)

With the increasing hazard rate assumption on h, Proposition 3 identifies a range [s−, s+] of 
severity levels around the exhaustion level, s0, such that simply pooling the severity levels in this 
range and fully revealing them outside this range is a principal’s optimal disclosure policy. This 
optimal policy can be interpreted as a censorship rule, which censors only states in [s−, s+]. 
If s+ < s̄, it is a middle censorship rule, which censors an intermediate range of true severity 
levels and fully reveals both very low and very high states. If s+ = s̄, it is an upper censorship 
rule, which censors all states above a cutoff s− > 0 and reveals only the states below s−. Under 
this disclosure policy, the agents’ public belief after observing the censored message is precisely 
the exhaustion level, s0, so that the healthcare system runs at exactly its full capacity, avoiding 
congestion when s ∈ (s0, s+].

The proof of Proposition 3 is built on Theorem 1 in Dworczak and Martini (2019). To get 
the underlying intuition, it is crucial to understand how the conditional value of the healthcare 
system, V (s̃), changes as the public belief, s̃, varies. Using Proposition 1, we can rewrite the 
conditional value of the healthcare system in a more explicit form

V (s̃) =
{

0, if s̃ ∈ [0, c],∫ 1
c

s̃p(n(s̃),n̄)
(s̃p(n(s̃), n̄)q − c)dH(q), if s > c.

(13)

When s̃ ≤ c, no one visits the hospital and, thus, this value is simply zero. When s̃ > c, an 
agent visits the hospital if their type q ≥ c

s̃p(n(s̃),n̄)
and the expected benefit from visiting is 

s̃p(n(s̃), n̄)q − c. Thus, the value of the healthcare system is 
∫ 1

c
s̃p(n(s̃),n̄)

(s̃p(n(s̃), n̄)q − c)dH(q).

Panel (a) of Fig. 1 provides a graphical illustration of a typical V function, which is in-
creasing and strictly so when s̃ > c. This is intuitive because the healthcare system is more 
valuable when the disease becomes more severe. Most importantly, there is a kink at the ex-
haustion level s0. This is inherited from the kink in the equilibrium probability of admission, 
p(n(s̃), n̄), at s0: p(n(s̃), n̄) = 1 when s̃ ≤ s0, but p(n(s̃), n̄) = n̄

n(s̃)
when s̃ > s0 because 

of congestion. Observe that V ′(s0−) = ∫ 1
c
s0

qdH(q) × lims̃↑s0(s̃p(n(s̃), n̄))′ and V ′(s0+) =∫
c
s0

qdH(q) × lims̃↓s0(s̃p(n(s̃), n̄))′. The term (s̃p(n(s̃), n̄))′ measures the marginal benefit, 

due to an increase in s̃, to every hospital visitor who indeed needs hospital care. When there 
is no congestion— i.e., s̃ < s0—this marginal benefit is simply 1. However, when congestion 
occurs—i.e., s̃ > s0—this marginal benefit is bounded above away from 1, because the increase 
in s̃ will reduce the admission probability of agents who go to the hospital. Therefore, we have 
V ′(s0−) > V ′(s0+), as is the case in panel (a) of Fig. 1.20

It is this kink at s0 that makes the full disclosure policy suboptimal, as the first part of Propo-
sition 3 states. To see this, observe that the gap V ′(s0−) > V ′(s0+) admits a straight line, �, that 
is above V over some interval [s1, s2] around s0 and that coincides with V at s0.21 See panel 

20 See Lemma B.4 in the online appendix for a formal proof.
21 Pick any a such that V ′(s0+) < a < V ′(s0−). Then, the line �(s̃) ≡ a(s̃ − s0) + V (s0) satisfies the desired property 
over some interval around s0.
11
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Fig. 1. Full information is not optimal.

(b) of Fig. 1 for an illustration. Moreover, the interval [s1, s2] can be properly chosen so that 
EG(s|s1 ≤ s ≤ s2) = s0. Then,

s2∫
s1

V (s0)dG(s̃) −
s2∫

s1

V (s̃)dG(s̃) =
s2∫

s1

�(s̃)dG(s̃) −
s2∫

s1

V (s̃)dG(s̃) > 0.

It is easy to see that the left-hand side measures the welfare difference between two information 
disclosure policies: one is the policy that censors states in [s1, s2] and fully reveals otherwise; 
and the other is full disclosure. The difference being strictly positive means that this censorship 
rule does strictly better than full disclosure.

In view of Proposition 2, such a censorship rule has two effects on welfare. On the one hand, 
when s ∈ (s0, s2], the censorship rule induces a public belief, s0, under which the healthcare 
capacity is fully used without congestion. That leads to a welfare gain and achieves ex-post 
efficiency. On the other hand, when s ∈ [s1, s0), the censorship rule exaggerates the severity 
level. Under the public belief s0 > s, some agents will make unnecessary hospital visits, which 
results in a welfare loss. Our analysis demonstrates that, when the interval [s1, s2] is properly 
chosen, the welfare gain from avoiding congestion for s ∈ (s0, s2] will be of first order, which 
dominates the welfare loss induced by unnecessary hospital visits for s ∈ [s1, s0). After all, the 
welfare gain is achieved by eliminating both misallocation and unnecessary visits, while the 
welfare loss occurs only due to some unnecessary visits, which do not lead to congestion or any 
misallocation.

Along the same line of reasoning, panel (b) of Fig. 1 also suggests that the total welfare 
can be further improved by extending the censoring range. Intuitively, we can find the largest 
interval [s−, s+] around s0 that: i) satisfies EG(s|s− ≤ s ≤ s+) = s0; and ii) admits a straight 
line over [s−, s+] that coincides with V at s0 and is above V elsewhere. Under the additional 
assumption that the density, h, has an increasing hazard rate, the second part of Proposition 3
shows that pooling the states in this [s−, s+] interval and fully revealing otherwise is not only 
welfare improving compared to full disclosure, but is also an optimal disclosure policy.

Fig. 2 gives a graphical illustration of the two possible cases of the censoring interval [s−, s+]. 
In panel (a), this interval is in the middle of the interval [0, ̄s], while, in panel (b), this interval 
contains all states above s−. The corresponding disclosure policies are middle censorship and 
12
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Fig. 2. The optimal disclosure policy.

upper censorship, respectively. The role of the increasing hazard rate assumption is to guarantee 
that V is strictly convex over [s0, ̄s], as depicted in Fig. 2.22 Intuitively, the convexity of V outside 
the censoring range ensures that fully revealing these states is optimal.

Other things being equal, whether the optimal disclosure policy is middle censorship or up-
per censorship depends on the distribution, G, of the severity levels. Lemma C.1 in the online 
appendix shows that a monotone likelihood ratio (MLRP) shift in the distribution of the severity 
levels moves the optimal censoring range to the left. Thus, if upper censorship is optimal under 
G, and G′ shifts G according to the MLRP order, the optimal disclosure policy under G′ may 
become middle censorship. The reason is simple. Because the disease is more likely to be severe 
under G′, pooling high severity levels becomes more costly — more low-severity levels at which 
full disclosure is efficient must also be pooled in order to eliminate congestion.

3.3. Uniqueness

The optimal disclosure policy in Proposition 3 is not the principal’s unique optimal disclo-
sure policy. Obviously, any disclosure policy that releases coarser information about states in 
[0, min{c, s−}] and shares the same censorship structure over [min{c, s−}, ̄s] as G̃∗ must also 
achieve the same welfare, as the agents’ behaviors are identical under these two disclosure poli-
cies. Our next proposition shows that these disclosure policies are the only optimal rules. In 
other words, if we ignore this uninteresting multiplicity, then the optimal disclosure policy is 
essentially unique. Clearly, G̃∗ is the most informative of all these optimal disclosure policies.

Proposition 4. Suppose that h is differentiable and has an increasing hazard rate. If G̃ is an 
optimal disclosure policy, then G̃ is a mean-preserving contraction of G̃∗, and G̃(s̃) = G̃∗(s̃) if 
s̃ ≥ min{c, s−}.

4. Extensions

With the previous benchmark model, we have shown the effectiveness of strategic informa-
tion disclosure in mitigating healthcare congestion in epidemics. One of the key insights is that 

22 See Lemma B.4 in the online appendix. The convexity of function V over [0, s0] holds true for any density h.
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pooling states around the exhaustion level can be welfare improving. In this section, we relax 
two important assumptions in our benchmark — random admission and information monopoly 
— one at a time, to discuss the robustness of our results.

4.1. Pre-screening

We have shown that hospital congestion leads to welfare loss, which leaves room for the 
principal to strategically disclose information. One of the major sources of welfare loss with 
congestion is the misallocation of scarce healthcare resources, due to the fact that the hospital 
cannot identify the patients who are the most likely to need care. Intuitively, in congestion, any 
method that helps the hospital screen patients and, thus, allocate limited healthcare resources 
more efficiently can be welfare improving. But as long as such a screening method can not 
completely eliminate the possibility of congestion, the principal can still improve welfare by 
manipulating information.

In this section, we confirm this intuition by extending our benchmark model to incorporate 
some effective pre-screening. It is reasonable to believe that as an epidemic evolves, the health-
care sector learns more about the nature of the virus and gains a better understanding of the 
factors (e.g., different comorbidities) that can predict serious symptoms and the need for hos-
pital care. Moreover, other protocols (e.g., a disease test) are developed to guide the hospital 
admissions.

We model pre-screening as a diagnostic evaluation that produces either a positive or negative 
result. We consider the case in which there is no false negative, so a patient who needs hospital 
care definitely tests positive.23 However, an agent who does not need hospital care obtains a neg-
ative result with probability γ ∈ [0, 1]. Parameter γ measures the precision of the pre-screening. 
The larger the γ , the more precise the pre-screening. The previous benchmark corresponds to 
γ = 0. When γ = 1, we have perfect screening.

Because a negative result perfectly reveals no need for hospital care, the hospital admits only 
those who obtain a positive result. If the total number of visitors who test positive does not 
exceed hospital capacity n̄, then they are all admitted. Otherwise, the hospital randomly admits 
those with positive results up to its capacity, as in the benchmark. Given no false negative, if 
Q ⊂ [0, 1] agents go to the hospital, the admission probability of an agent who needs hospital 
care is then{

1,
n̄∫

Q
(q + (1 − γ )(1 − q))h(q)dq

}
.

Clearly, this probability is weakly increasing in γ because, when the pre-screening is more pre-
cise, it is more likely to screen those who do not need hospital care.

We assume that the total demand for hospital care in the society exceeds the hospital capacity, 
i.e., Eq > n̄. Under this assumption, congestion is possible regardless of γ . For instance, if all 
agents choose to go to the hospital, the total number of positive results will exceed n̄ even with 
perfect pre-screening.24

23 Such a specification makes this extension more aligned with the benchmark and facilitates the comparison. The main 
insight that full information disclosure is not optimal as long as pre-screening does not completely rule out the possibility 
of hospital congestion still holds if we incorporate the false negative.
24 If Eq ≤ n̄, there exists γ ∈ (0, 1] such that 

∫ 1
0 (q + (1 − γ )(1 − q))h(q)dq = n̄. Then, when the pre-screening is 

sufficiently precise — i.e., γ ≥ γ — congestion is completely eliminated.
14
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As in the benchmark, after the agents form public belief s̃ about the disease’s severity level, 
they simultaneously and independently decide whether to go to the hospital. Qualitatively simi-
lar to the benchmark, there is a unique Bayesian Nash equilibrium for each γ , in which agents 
use symmetric cutoff strategies.25 The equilibria for different γ differ quantitatively in the ex-
haustion level s0,γ . When the pre-screening is completely uninformative— i.e., γ = 0— s0,0 is 
exactly the benchmark exhaustion level s0. As γ increases, the exhaustion level s0,γ also strictly 
increases. This is intuitive, as with a larger γ , when making admission decisions, the hospital is 
more capable of identifying who needs hospital care. If the same set of agents choose to visit 
the hospital, the pool of agents from which the hospital considers admissions becomes strictly 
smaller, and, therefore, the capacity will not be exhausted under the public belief, s̃ = s0,γ .

Based on the equilibrium analysis, we can then investigate the principal’s information dis-
closure, as in the benchmark. The next proposition summarizes the results. Let γ̄ ≡ inf{γ ∈
[0, 1]|s0,γ ≥ s̄} with the convention that γ̄ = +∞ if the set is empty.

Proposition 5. For any γ < γ̄ , full information disclosure is not optimal. If in addition h is 
differentiable and has an increasing hazard rate, then censoring a certain interval [s−,γ , s+,γ ]
around s0,γ is optimal. For any γ ≥ γ̄ , full information disclosure is optimal.

To understand how the optimal disclosure policy depends on the precision γ , recall that we 
assumed that s0 < s̄, or, equivalently, s0,0 < s̄, in the benchmark model. As the exhaustion level, 
s0,γ , is increasing in γ , this assumption does not guarantee s0,γ < s̄ for all γ ∈ [0, 1]. Thus, we 
identify γ̄ such that s0,γ < s̄ for any γ < γ̄ . In such cases, congestion still occurs in equilibrium 
under full disclosure. Therefore, for any γ < γ̄ , the optimal disclosure policy is qualitatively 
similar to the one in the benchmark model: censoring an interval around the exhaustion level s0,γ

whose conditional mean is exactly s0,γ . In contrast, when γ ≥ γ̄ , we have s0,γ ≥ s̄. This means 
that congestion never occurs in equilibrium under full information disclosure. Consequently, full 
information disclosure is optimal according to Proposition 2.

The critical precision level, γ̄ , by definition, depends on the upper bound of the disease sever-
ity s̄. If s̄ is sufficiently high, then γ̄ = +∞, which means that s0,γ < s̄ for all γ ∈ [0, 1]. In 
this case, it is worth noting that the corresponding censorship policy is optimal even under per-
fect pre-screening. This is the case because, although healthcare resources are always allocated 
efficiently due to perfect pre-screening, hospital congestion still leads to welfare loss due to un-
necessary hospital visits, which can be mitigated through strategic disclosure. In this sense, even 
perfect pre-screening cannot completely replace the role of strategic disclosure in alleviating 
congestion.

4.2. Information leakage

We now consider the possibility that the information about the true severity level of the disease 
is leaked to a fraction of the population. This could happen due to, for example, limited access 
to experts’ opinions or restricted media coverage. Suppose that τ ∈ (0, 1) fraction of agents 
are always informed of the true severity level s. The other 1 − τ fraction of agents remains 
uninformed as they are in the benchmark. Whether informed or not, each agent’s probability of 
needing hospital care is still distributed according to H . Therefore, the overall type distributions 

25 We provide a detailed analysis in Section E in the online appendix.
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among these two groups of agents are identically H . As before, we consider the case in which 
the principal’s information disclosure is public. Under such a policy, both the informed and 
uninformed agents observe the public signal.26 We also assume that there is no communication 
between these two groups of agents. This environment is common knowledge among all agents. 
The uninformed agents are aware that some fraction of the population has better information 
than they do, and the informed agents know that the uninformed agents observe only the public 
signal.

Obviously, the model reduces to the benchmark at the extreme case τ = 0. At the other ex-
treme, τ = 1, all agents are fully informed, and, clearly, disclosure policy can never be effective. 
For any intermediate case τ ∈ (0, 1), the asymmetric information between these two groups of 
agents poses a challenge to our analysis. In the current setting, it is the uninformed agents’ pos-
terior belief, not just the posterior mean as in the benchmark, that matters for their equilibrium 
behavior. This is because that the uninformed agents must form a belief not only about the sever-
ity level, but also about the behavior of the informed agents. Nonetheless, the next proposition 
states that one of the key insights of Proposition 3 still carries over provided there is only a small 
fraction of informed agents.

Proposition 6. There exists τ̄ ∈ (0, 1) such that full information disclosure is not optimal for any 
τ ≤ τ̄ . In particular, censoring a certain interval of the true severity levels around s0 does strictly 
better than full information disclosure.

Proposition 3 shows that without information leakage, pooling a certain interval around s0
can eliminate congestion and improve social welfare. Under such a policy, the public belief is s0
after the censored signal, and each agent goes to the hospital if their type qi ≥ c

s0
. In the presence 

of information leakage, by pooling a properly designed interval around s0, we show that it is 
still possible to induce the same behavior of the uninformed agents — each of them goes to 
the hospital if their type qi ≥ c

s0
after the censored message.27 Proposition 6 verifies that such a 

disclosure policy is indeed welfare improving compared to full information disclosure, when the 
fraction of the informed agents is not too big.

Admittedly, the effectiveness of such a policy is diminishing as the fraction of informed agents 
becomes larger. On the one hand, the existence of the informed agents reduces the population 
whose behavior can be manipulated through strategic disclosure. On the other hand, and perhaps 
more importantly, such censorship has a counter effect on the informed agents’ behavior. When 
the true state is above s0, knowing that the uninformed agents have a lower incentive to visit the 
hospital given the censored signal, the informed agents will actually have a greater incentive to 
visit due to strategic substitution. Therefore, it is intuitive that such a censorship policy will no 
longer be effective when τ is sufficiently large.

5. Concluding remarks

A main theme of economics concerns the efficient allocation of scarce resources. The epi-
demic outbreak, as a public health crisis, features a situation in which the free market with pricing 
competition cannot guarantee efficient resource allocation. At the same time, central planning 

26 For our result in Proposition 6, it does not matter whether the informed agents observe the signal or not.
27 The uninformed agents’ posterior mean may not be s0 after the censored message. See Section F.2 in the online 
appendix for the detailed construction of such a policy.
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cannot achieve efficiency since the social planner does not have enough information about in-
dividuals’ demand. In such an environment, congestion can pose a critical threat to economic 
efficiency.

In this paper, we construct a model to study the healthcare congestion problem. Information 
disclosure policy is found to be effective in mitigating the congestion and improving the effi-
ciency of the healthcare system. In particular, pooling the states around the exhaustion level and 
fully revealing other states always dominates the policy of full disclosure, and, under mild con-
ditions, it prevails as the optimal disclosure policy. We further show that this insight is robust to 
considering partially effective pre-screening and limited information leakage.

On the applied side, we restrict our attention to disclosing information about the disease sever-
ity and its effect on agents’ hospital visits. Our results rely on the assumption that all agents are 
fully rational and Bayesian, which, admittedly, may not hold true during an epidemic. In ad-
dition, there are other dimensions of information that can be critical to both agents’ strategic 
decision making and social welfare in epidemics. For instance, disclosing information about the 
infectiousness of the virus may change social-distancing choices, and revealing effectiveness and 
safety information about vaccines may matter for decisions of whether to be vaccinated. Further, 
through these channels, information may endogenously shape the distribution of agents’ needs 
for hospitalization, which is taken as exogenous in our paper. On the theory side, the information 
design problem in our main model naturally boils down to a linear persuasion problem. However, 
we believe that the key insight gained from this study — pooling states around the exhaustion 
level can alleviate congestion and improve efficiency — should hold in a more general conges-
tion setting, as is suggested by our analysis in Section 4.2, where the problem is no longer linear. 
We believe these are promising avenues for future research.

Appendix A

Proof of Proposition 1. Suppose the strategy profile {a∗
i ( · ; ̃s)}i=1 is a Bayesian Nash equi-

librium. Consider agent i with probability of infection qi . Agent i’s expected payoff from his 
visiting decision ai is

vi(ai;qi, s̃, n(s̃)) = ai(−c − qi(1 − p(n(s̃), n̄))s̃) + (1 − ai)(−qi s̃),

where n(s̃), which is the total number of hospital visits, satisfies (3). Therefore, we have

a∗
i (qi; s̃) =

{
1, if qi > c

p(n(s̃),n̄)s̃
,

0, if qi < c
p(n(s̃),n̄)s̃

.
(14)

Since i is arbitrary, we immediately know that the equilibrium is symmetric and every agent uses 
the same strategy as in (14). By (3), we know that n(s̃) satisfies

n(s̃) = 1 − H

(
c

p(n(s̃), n̄)s̃

)
.

It remains to show that this equation has a unique solution n(s̃) that is given by (5) or (6), 
depending on s̃. We leave the details to the online appendix. See Lemma A.2. �
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Proof of Lemma 1. By Proposition 1, the aggregate welfare is

U(s̃, s) =
∫

q<β(s̃)

(−qs)dH(q) +
∫

q>β(s̃)

(−c − q(1 − p(n(s̃), n̄))s)dH(q)

= −sEq − c(1 − H(β(s̃))) + p(n(s̃), n̄)s

∫
q>β(s̃)

qdH(q)

= −sEq − cn(s̃) + s min{n(s̃), n̄}E(q|q > β(s̃)),

where the last equality comes from n(s̃) = 1 − H(β(s̃)). �
Proof of Proposition 2. We first characterize the ex-post efficient allocation and then show that 
it is achieved in equilibrium by a certain public belief s̃. Suppose the true severity level is s. 
Consider the planner’s problem of deciding who should go to the hospital to maximize the ex-
post total welfare. It is

max
a:[0,1]→{0,1}

1∫
0

a(q)(−c − q(1 − p(n, n̄))s) + (1 − a(q))(−qs)dH(q),

s.t. n =
1∫

0

a(q)dH(q).

It is straightforward to see that the optimal allocation must take a cut-off form a(q) = 1 if and 
only if q ≥ q∗ for some q∗ ∈ [0, 1]. Restricted to such a cut-off form, the planner’s problem can 
be written as

max
q∗∈[0,1] −sEq +

1∫
q∗

(−c + q min{1,
n̄

1 − H(q∗)
}s)dH(q).

If n̄ < 1 − H(q∗), or equivalently q∗ < H−1(1 − n̄), the objective function becomes

−sEq − c(1 − H(q∗)) +E(q |q ≥ q∗),

which is clearly strictly increasing in q∗. Therefore, q∗ < H−1(1 − n̄) is never optimal. Thus, 
the planner’s problem is equivalent to

max
q∗∈[H−1(1−n̄),1]

−sEq +
1∫

q∗
(−c + qs)dH(q).

The solution to this problem is q∗ = max{H−1(1 − n̄), c
s
}, or equivalently,

q∗ =

⎧⎪⎨
⎪⎩

1, if s ≤ c,
c
s
, if c < s ≤ s0,

H−1(1 − n̄), if s > s0,

where, recall, s0 = c
−1 is the exhaustion level.
H (1−n̄)
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By Theorem 1, we can see that the equilibrium cut-off is

β(s̃) =
{

1, if s̃ ≤ c,
c
s̃
, if c < s̃ ≤ s0.

Therefore, the equation β(s̃) = q∗ has a solution

s̃ =

⎧⎪⎨
⎪⎩

any value in [0, c], if s ≤ c,

s, if c < s ≤ s0,

s0, if s > s0.

This pins down the public belief that achieves ex-post efficiency, as desired. �
The main idea of the proof of Proposition 3 is built on Theorem 1 in Dworczak and Martini 

(2019). The complete proof is a little involved because it requires a detailed understanding of the 
properties of V in (10). In a nutshell, what is needed for the proof is summarized in the following 
lemma, whose proof is relegated to the online appendix.

Lemma 2. Function V is continuously differentiable except at s0, in which case V ′(s0−) >
V ′(s0+). Moreover, if h is differentiable and has an increasing hazard rate, there exist 0 < s− <

s0 < s+ ≤ s̄ such that

(i) EG(s̃ | s− ≤ s̃ ≤ s+) = s0;
(ii) the function W : [0, ̄s] → R defined as

W(s̃) ≡
{

V (s̃), if s̃ ∈ [0, s−) ∪ (s+, s̄],
V (s0)−V (s−)

s0−s− (s̃ − s0) + V (s0), if s̃ ∈ [s−, s+], (15)

is convex and everywhere above V .

Proof of Proposition 3. First, we show that full information disclosure is not optimal. By 
Lemma 2, we can pick a such that V ′(s0+) < a < V ′(s0−). Then, there exists an interval [s̃1, ̃s2]
around s0 such that V ′(s̃) < a < V ′(s̃′) for all s̃ ∈ (s0, ̃s2] and s̃′ ∈ [s̃1, s0). Hence, the straight 
line �(s̃) ≡ a(s̃ − s0) + V (s0) is strictly higher than V over [s̃1, ̃s2]\{s0} and coincides with 
V at s0. Pick an interval [s−, s+] ⊂ [s̃−, ̃s+] such that EG(s̃ | s− ≤ s̃ ≤ s+) = s0. Consider the 
disclosure policy G̃ that censors s ∈ [s−, s+] and fully discloses otherwise. Then,

s̄∫
0

V (s̃)dG̃(s̃) −
s̄∫

0

V (s̃)dG(s̃) =
s+∫

s−

(V (s0) − V (s̃))dG(s̃) =
s+∫

s−

(�(s̃) − V (s̃))dG(s̃),

which is strictly positive. Therefore, G̃ is better than the full disclosure policy G.
Next, we assume that h is differentiable and has an increasing hazard rate. Consider the in-

terval [s−, s+] and function W in Lemma 2, and G̃∗ in (12). Because G̃∗ is the distribution that 
puts all the mass over [s−, s+] under G to the atom s0 and because EG(s̃ | s− ≤ s̃ ≤ s+) = s0, we 
immediately know that G̃∗ is a mean-preserving contraction of G. By Theorem 1 in Dworczak 
and Martini (2019), if we can verify that 

∫ s̄

0 W(s̃)dG(s̃) = ∫ s̄

0 W(s̃)dG̃∗(s̃) and 
∫ s̄

0 V (s̃)dG̃∗(s̃) =∫ s̄
W(s̃)dG̃∗(s̃), we know that G̃∗ is optimal.
0
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For the first equality, notice that G and G̃∗ coincide over [0, s−] ∪ [s+, ̄s] and that W is linear 
over [s−, s+] by construction. Thus,

s̄∫
0

W(s̃)dG(s̃) −
s̄∫

0

W(s̃)dG̃∗(s̃) =
s+∫

s−

W(s̃)dG(s̃) −
s+∫

s−

W(s̃)dG̃∗(s̃)

=(G(s+) − G(s−))W(s0) − (G̃∗(s+) − G̃∗(s−))W(s0) = 0.

For the second equality, notice that suppG̃∗ = [0, s−] ∪ {s0} ∪ [s+, ̄s] if s+ < s̄ and suppG̃∗ =
[0, s−] ∪ {s0} if s+ = s̄. In either case, we have V = W over this set by the construction of W . 
This completes the proof. �
Appendix. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2022 .105469.
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