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Consumer search and optimal information
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This article studies an information design problem in a sequential consumer search environment.
Consumers, whose valuation of firms’ products is uncertain, observe a noisy signal about the
valuation upon being matched with a firm. The goal is to characterize those signal structures that
maximize consumer surplus. We show that the consumer-optimal signal structure can be found
within the class of conditional unit-elastic demand signal distributions. A rich set of properties
and comparative statics of the consumer-optimal signal distributions are also derived.

1. Introduction

� The extensive rise in the availability of information has become a central element trans-
forming markets and the way they function in recent years. Having access to an immense amount
of information through various channels, consumers receive significant assistance in choosing
between alternatives. This affects their behavior and in turn the behavior of the other market
participants, creating market-wide implications.

The channels through which consumers gain access to information include various types
of business platforms. Some of them are online review platforms, like Yelp, focusing purely on
information provision. Some others are online marketplaces, like eBay, managing the underly-
ing information alongside transactions. Understanding their users’ needs and their own business
goals, these platforms also carefully design their websites to organize, structure, and label the
content to disclose the relevant information. For example, platforms can choose which features
of the products to disclose and which elements to emphasize more, at what level of detail to
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provide information, whether to highlight negative reviews or positive reviews about the prod-
ucts, which algorithm to use to detect fake reviews, and so forth. All these aspects of design will
shape consumers’ perceptions of products and services, which in turn will determine the market
interactions and performance, and ultimately the profitability of the platforms. Naturally, each
platform chooses the structure of the information in a way to balance the needs of users with the
goals of the business.

In this article, we formally investigate a platform’s optimal design of its information pro-
vision. We consider a platform as a search market where firms compete by setting prices and
consumers search sequentially. By incurring a search cost, a consumer can sample a firm, upon
which he observes its price and receives a noisy signal about the match quality. The platform
designs the information disclosure rule that governs how this noisy signal is generated. Our goal
is to understand the information disclosure rules that maximize consumer welfare. This objec-
tive is most relevant for online review platforms, such as Yelp and TripAdvisor. These platforms
obtain their revenue mostly from advertising. Because advertising revenue is determined by the
volume of visitors, who are mainly consumers, these platforms naturally want to provide the most
benefits to consumers to attract as many of them as possible.

We adopt the information design approach and focus on information disclosure rules that
are independent across firms.1 The fact that there is no a priori restriction on the form of the
information disclosure for every firm’s product reflects the extensive flexibility that platforms
can exploit in their practical design. It can also help us understand the boundary of the welfare
effects of information in these markets.

We first show that every equilibrium consumer surplus that can possibly arise under an arbi-
trary signal distribution can be achieved by a conditional unit-elastic demand signal distribution.
Such a signal distribution has a simple structure. It incorporates an atom that reveals low match
value and a continuum of signals that reveal high match values. In the corresponding equilib-
rium, consumers actively search in the market, and they reject the equilibrium price offering if
and only if the low match value atom signal is observed. The distribution of signals that indicate
high match values are tailored to induce a unit-elastic demand over a certain price range for each
firm, given the search strategy of the consumers. This form generalizes the unit-elastic demand
signal distribution in Roesler and Szentes (2017), and we will discuss the relationships in more
detail in Section 3.

The structure of such a signal distribution is very natural as it simultaneously accounts for
the two roles that information plays in this search market. On the one hand, the signal distribution
informs the consumers whether the current match value is low or high, based on which the con-
sumers decide whether to accept the current offering. This induced search behavior determines
the equilibrium expected match quality, the total cost of search, and thus the total welfare. On
the other hand, the specially distributed high match value signals guarantee that the firms have
no incentive to deviate from a targeted equilibrium price. This, in turn, determines how the total
welfare of this market is divided between the consumers and firms.

Restricting attention to conditional unit-elastic demand signal distributions, there is a unique
consumer-optimal one. Its determination involves a trade-off between the two roles of informa-
tion mentioned above. Loosely speaking, higher total welfare requires more information for the
consumers to find a better match, but at the same time, more information also leads to higher
equilibrium price, as it gives rises to a more differentiated market, which softens the compe-
tition.2 Therefore, unlike the case in Roesler and Szentes (2017) where the consumer-optimal
signal distribution always maximizes the total welfare, the optimal one in this search market
must balance the total welfare and the equilibrium price.

1 We rule out the case where the platform reveal information about relative valuations, such as ranking information.
2 Anderson and Renault (1999) focus on a parameterized class of value distributions, and find that a more differen-

tiated market may result in lower price because it leads to more search, which intensifies the competition among the firms.
In the presence of flexible information design, more information (hence more differentiated market) does not necessarily
lead to more search, and higher total welfare is always associated with higher minimal feasible equilibrium price.
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It is intuitive that less search friction is beneficial for consumers, as it promotes competition
among the firms and saves the total cost of searching. Consequently, the optimal consumer sur-
plus is strictly increasing as the search cost decreases. Moreover, we show that the optimal design
for a market with less search friction should set a smaller probability of trade. This confirms the
intuition that the consumer-optimal signal distribution should make use of less search friction
by inducing more searches. We also provide a characterization of the limiting behavior of the
consumer-optimal signal distributions as the search cost vanishes.

In addition to analyzing which signal distribution is optimal, we also investigate which sig-
nal distribution is never consumer-optimal. That is, it is not optimal regardless of the underlying
true value distribution. Intuitively speaking, if a signal distribution induces an equilibrium in
which the consumer surplus is too low compared to the total welfare, this signal distribution is
never consumer-optimal. A sufficient condition is that the equilibrium profits of a matched firm
exceed the search cost of this market. This condition is particularly interesting because it only
involves equilibrium quantities that are easy to observe, rather than the details of the underlying
signal distribution.

In our baseline model, we only focus on pure strategy equilibria, but we also extend our
analysis to show that designing signal distributions that allow mixed strategy equilibria with
active search cannot improve consumer welfare. This is because every consumer surplus from a
mixed strategy equilibrium must be achieved by a pure strategy equilibrium in a market with a
larger search cost. Hence, this consumer surplus, which is weakly lower than the highest level
we obtain from a pure strategy equilibria in this new market by definition, is strictly less than
the highest level in the original market as our comparative statics results show. We also apply a
similar idea to show that asymmetric design for a prominent firm cannot make consumers strictly
better off than the simple symmetric design.

� Related literature. Recently, there has been a growing literature on Bayesian persuasion
and information design, initiated by Rayo and Segal (2010) and Kamenica and Gentzkow (2011);
see Bergemann and Morris (2019) for an extensive survey. Our article is closely related to
the work of Roesler and Szentes (2017), who study buyer-optimal information structure in a
monopoly pricing setting. They first introduce the notion of the unit-elastic demand signal distri-
bution and show that the maximal buyer surplus can be achieved by a signal distribution within
this class.3 We extend their analysis to a competitive environment. The most important feature
of this environment is that the consumers’ outside option, which governs the consumers’ search
incentives and in turn determines the firms’ demand curve and pricing incentives, arises endoge-
nously in equilibrium. This nature imposes a significant challenge in how to construct signal
distributions that can achieve all possible levels of consumer surplus under arbitrary signal dis-
tributions. To deal with such difficulty, we rely on the Rothschild–Stiglitz approach proposed by
Gentzkow and Kamenica (2016). It allows us to represent signal distributions by certain convex
functions and transforms the daunting feasibility constraints into simpler geometrical conditions.
With this approach, we show how to generalize the construction in Roesler and Szentes (2017)
to incorporate the consumers’ endogenous outside option as part of the design. We discuss this
generalization in more detail in Section 3.

More recently, Armstrong and Zhou (2021) also study an information design problem in a
competitive environment. Rather than the search market, their main focus is duopolistic competi-
tion in a discrete choice model. The major challenge of information design in this environment is
that the consumer has multiple outside options and the one from the competing firm is stochas-
tic. By focusing on the case where the consumer always purchases from one of the two firms,
the authors show that this difficulty can be overcome as disclosure information about relative

3 Condorelli and Szentes (2020) extend the analysis to the classical hold-up problem, where there is no fixed prior
about the buyer’s valuation, and Choi, Kim, and Pease (2019) analyze a search good environment. Both studies find that
the unit-elasticity plays an important role in maximizing the buyer’s welfare.
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valuation is sufficient for the market. Under this observation, Armstrong and Zhou (2021) char-
acterize both the consumer and industry optimal signal distribution, as well as the welfare limits
of this market.

Our consumer search model is based on the seminal work by Wolinsky (1986). We introduce
an information design problem into this framework. In a similar consumer search framework,
Bar-Isaac, Caruana, and Cuñat (2012) analyze a model where firms compete not only in prices,
but also their product designs, of which designing information to provide to consumers is one
interpretation. By restricting attention to a parameterized family of signal distributions that are
ordered by the demand rotation order in Johnson and Myatt (2006), Bar-Isaac, Caruana, and
Cuñat (2012) show that every firm provides the maximal or minimal level of information. In
contrast, our article considers information design by a third party, for example, a platform, that
cares about only consumers, and we do not impose any restrictions on the form of information
provision. This allows us to investigate the limit of the welfare effect of information in search
markets. As we show, the consumer-optimal information in our framework is not extremal. It
optimally trades off providing information to consumers and controlling firms’ prices.

There is also a strand of the literature studying decentralized information disclosure by com-
petitive firms within the information design framework. Au and Kawai (2020) abstract away from
pricing incentives and analyze competition among firms that disclose their own product informa-
tion to persuade buyers. Hwang, Kim, and Boleslavsky (2019) consider an oligopoly model in
which firms compete not only in prices, but also their advertising strategies about how much
product information to provide. Board and Lu (2018) study a search setting in which products
across firms are homogeneous and the firms compete in how much information to disclose about
the common state, taking into account that the buyer can always move on, at a positive search
cost, to a competitor. Au and Whitmeyer (2018) consider a related information design problem
in a directed search setting where firms in an oligopolistic market compete in attracting and per-
suading buyers through their information disclosure about their own products of heterogeneous
qualities. Our setting is quite different from these articles, as firms only compete in their prices
and product information disclosure is designed by a third party, such as a platform.

The remainder of this article is organized as follows. We introduce the formal model and the
information design problem in Section 2. In Section 3, we construct the class of conditional unit-
elastic demand signal distributions and show that it is rich enough for us to analyze the consumer-
optimal design. In Section 4, we study the determination and properties of the consumer-optimal
signal distribution. In Section 5, we discuss two extensions of the baseline model: equilibria in
mixed strategies and asymmetric design for a prominent firm. Section 6 concludes and discusses
potential future research. The Appendix contains the proof of Proposition 1. All the missing
proofs, unless otherwise stated, can be found in the online Appendix.

2. Model

� Setup. We consider a platform as a search market. The framework is based on a model
of sequential consumer search due to Wolinsky (1986). We consider its limit case where there
are a continuum of risk neutral firms and a continuum of risk neutral consumers.4 Each firm
supplies a single product. The firms’ costs of providing their products are normalized to zero.
Each consumer wishes to purchase one unit of one product from the market. The value of a
firm’s product to a consumer is u, which is distributed according to a cumulative distribution
function F over [0,1]. Let μ denote the expected value, that is, μ ≡ ∫ 1

0
udF (u) ∈ (0, 1).

The market interacts as follows: Firms simultaneously choose a price for their own product.
Consumers initially have imperfect information about all prices and match values. They must
gather price and value information through a sequential search process. By incurring a search

4 This setting rules out the case where there are only a finite number of firms and where the consumers’ search
order is endogenous. Such setting is analyzed in Zhou (2011), Armstrong (2017), and Choi, Dai, and Kim (2018) given
exogenously fixed information disclosure.
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cost s ∈ (0, μ), a consumer can discover a particular product’s price, say p, and receive a noisy
signal, say q, about the match value.5 Such signal q is generated by an underlying information
technology, which governs how much product information to reveal to a consumer when he is
matched with a firm. Throughout the article, we restrict attention to the case where this signal q
only reveals information about the current match value and is independent of the match values
from other firms. This is mainly for tractability. It rules out some strategies that a platform in
practice can adopt, such as providing ranking information.6 We also assume that the information
technology is identical across all matches.7 Based on the signal, the consumer forms expectation
E[u|q] about the match value and then decides whether to purchase from this currently matched
firm. If he purchases, he stops searching and leaves the market. In this case, his expected surplus
is E[u|q] − p and the profits of the firm are p. If he does not purchase, he and the firm get zero
from the current match. He then can decide whether to continue searching. As this environment
is stationary, whether the consumers have free recall or not does not make a difference.

We are interested in the consumer-optimal information technology that gives consumers the
highest equilibrium surplus. As consumers are risk neutral and their purchasing decisions only
depend on the conditional mean E[u|q], the firms’ demand and their pricing decisions are en-
tirely driven by the marginal distribution of the conditional mean. Therefore, the problem of de-
signing a consumer-optimal information technology can be reduced to identifying the marginal
distribution of the conditional mean that gives consumers the highest equilibrium surplus. It
is well known that a distribution of the conditional mean G is induced by some information
technology if and only if it is a mean-preserving contraction of F :

∫ 1

0
qdG(q) = ∫ 1

0
qdF (q) and∫ x

0
G(q)dq ≤ ∫ x

0
F (q)dq for all x ∈ [0, 1]. See, for instance, Blackwell (1951), Gentzkow and

Kamenica (2016), Kolotilin (2018), and Dworczak and Martini (2019). We refer to such a distri-
bution G as a feasible signal distribution and let GF be the set of all feasible signal distributions.8

For one example, F itself is the most informative signal distribution in GF . It always perfectly
reveals the realized match value to consumers. For another example, F0, which specifies an atom
of size one at μ, is the totally uninformative signal distribution. It reveals no information about
the realized match value to the consumers.

� Equilibrium. We focus on symmetric pure strategy equilibria until Section 5, where we
extend our analysis to equilibria in mixed strategies. A symmetric pure strategy equilibrium is a
price p and a stopping rule for consumers such that (i) the consumers’ stopping rule is optimal
given that all firms charge p, and (ii) no firm has an incentive to charge a different price given
the consumers’ stopping rule and the belief that all firms charge p.9 Every signal distribution
induces a trivial equilibrium where all firms charge sufficiently high price so that no consumer
participates in the market at all. Such equilibrium leaves zero surplus to the consumers. As our
goal is to design a consumer-optimal signal distribution, we focus on equilibria in which con-
sumers actively search and earn positive surplus. We call this kind of equilibrium a symmetric
pure strategy equilibrium with active search, or simply an equilibrium if no confusion arises.

5 If s ≥ μ, it is optimal for consumers not to search at all as long as firms charge nonnegative prices. Therefore, we
rule out this uninteresting case.

6 This kind of information disclosure rule, that is, disclosure of relative valuation, is extensively studied in Arm-
strong and Zhou (2021).

7 We discuss an asymmetric case in Section 5 where the platform adopts different information technology for a
prominent firm and non-prominent firms.

8 Every realized conditional mean q from G can be equivalently viewed as an unbiased signal E[u|q] = q. This
explains why we term G as a signal distribution.

9 We follow the tradition in the consumer search literature and assume that consumers’ beliefs are passive: Con-
sumers do not update their beliefs about other firms’ prices if a firm deviates.
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For any signal distribution G ∈ GF , let cG : [0, 1] → R+ be the consumers’ incremental ben-
efit function, defined as

cG(x) ≡
∫

[x,1]

(q − x)dG(q), ∀x ∈ [0, 1]. (1)

This function captures the consumers’ search incentives, as the value cG(x) is each consumer’s
incremental gain from one more search with a match of expected quality x at hand. By integration
by parts, cG(x) = ∫ 1

x
(1 − G(q))dq.10 Thus, the derivative of this function also captures the firms’

demand curve 1 − G(x−) = −c′
G(x−).11 The following lemma characterizes an equilibrium in

terms of this incremental benefit function.

Lemma 1. Suppose the signal distribution is G ∈ GF . There is a symmetric pure strategy equi-
librium with active search in which consumer surplus is v ≥ 0 if and only if there exists a signal
cutoff b such that the following two conditions are satisfied:

cG(b) = s, (2)

and

−c′
G(b−)(b − v) ≥ −c′

G(x−)(x − v), ∀x ∈ [0, 1]. (3)

In this equilibrium, each firm charges price p = b − v and consumers purchase at p if and only
if they receive a signal greater than or equal to b.

Lemma 1 is a standard result in the consumer search literature and thus its proof is omitted.
The idea is the following. When all firms charge the same price, consumers face a stationary
environment. As a result, the consumers’ optimal stopping rule is a cutoff rule. In particular,
consumers stop and purchase from a firm with price p′ and signal q if and only if q − p′ ≥ v,
where v is consumers’ equilibrium surplus. As all firms charge the same price, say p, on the
equilibrium path, the consumers’ equilibrium signal cutoff should be b ≡ v + p. Condition (2)
characterizes this signal cutoff b. With signal b at hand, the consumers should be indifferent
between stopping and one more round of search, as the incremental benefit of one more search,
cG(b), equals the search cost s.12 Condition (3) is about firms’ incentives. It requires that no firm
has an incentive to deviate from the equilibrium price p = b − v to any other price. The left-hand
side is a firm’s profits from the equilibrium price p = b − v. The right-hand side is its profits from
deviating to price p′ = x − v. Facing such a price, the consumers’ signal cutoff is p′ + v = x.
Thus, the firm’s associated demand and profits are 1 − G(x−) = −c′

G(x−) and −c′
G(x−)(x − v),

respectively.13 As there is a one-to-one relationship between the firm’s price and consumers’
signal cutoff for that price, the firms’ pricing decision can be equivalently viewed as a decision
to set a cutoff signal. In this respect, an alternative interpretation of condition (3) is that no firm
has an incentive to deviate from the equilibrium signal cutoff b.

With a slight abuse of terminology, we call a pair (b, v) that satisfies conditions (2) and
(3) an equilibrium. We note that the expected total welfare of equilibrium (b, v) is also b. This
is readily seen from the equilibrium identity b = v + p, as the right-hand side is the sum of
consumer surplus and industry surplus. In later analysis, some results will be more intuitive if
we interpret b as the total welfare.

10 See, for example, Theorem 21.67 in Hewitt and Stromberg (1965) for integration by parts for Lebesgue-
Stieltjes integrals.

11 We use c′
G(x−) to denote the left derivative of cG at x ∈ (0, 1] and G(x−) to denote the left limit of G at x.

12 This optimal stopping rule is well known in the search literature. For instance, see Weitzman (1979).
13 We have implicitly assumed that the consumers always accept the offering when they are indifferent. This as-

sumption is made for ease of exposition. In the online Appendix, we show that relaxing this assumption and allowing
consumers to randomize do not change our result at all.
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FIGURE 1

FEASIBLE INCREMENTAL BENEFIT FUNCTIONS

� Information design problem. Because Lemma 1 indicates that the effect of a signal distri-
bution on the corresponding equilibrium behavior is encoded in its incremental benefit function,
we can formulate our information design problem as choosing a feasible incremental benefit
function. Formally, let CF ≡ {cG | G ∈ GF } be the set of all feasible incremental benefit functions.
Then, the problem of designing a consumer-optimal signal distribution can be formulated as

max
c∈CF

v

s.t. ∃ b such that (b, v) and c satisfy (2) and (3).
(4)

It is possible that no incremental benefit function c ∈ CF induces an equilibrium with active
search. That is, the constraint set of (4) may be empty.

If, instead, there is at least one incremental benefit function c ∈ CF that induces such an
equilibrium, we say the search market (F, s) admits active search. We will focus on these search
markets in the following analysis. Corollary 1 in Section 3 provides a characterization of when a
search market admits active search.

3. Conditional unit-elastic demand signal distributions

� In this section, we construct a special class of feasible signal distributions, which will be
called conditional unit-elastic demand signal distributions. This class is rich enough so that we
can restrict our attention to it to find a consumer-optimal one.

� Feasible incremental benefit functions. Let cF0
be the incremental benefit function under

the totally uninformative signal distribution F0. It is easy to see that cF0
(x) = max{μ − x, 0}. Let

cF be the incremental benefit function under full information. Both cF0
and cF are elements in CF .

The following lemma, which builds on Gentzkow and Kamenica (2016), shows that the set of all
feasible incremental benefit functions is just the set of all convex functions bounded between cF0

and cF .14

Lemma 2. A function c : [0, 1] → R is the incremental benefit function of a feasible signal
distribution if and only if it is convex and cF0

≤ c ≤ cF . Therefore, CF = {convex c : [0, 1] →
R|cF0

≤ c ≤ cF }.

Figure 1 gives an illustration of CF based on Lemma 2. The lower black curve is cF0
. It is

a downward-sloping 45-degree line over [0, μ] and coincides with the x-axis over [μ, 1]. The
higher black curve is cF . The shaded area between cF0

and cF represents the range of CF . Any

14 Because it is a straightforward variation of Proposition 1 in Gentzkow and Kamenica (2016), its proof is omitted.
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convex function in this area is a feasible incremental benefit function, and vice versa. The con-
dition cF0

≤ c ≤ cF has an intuitive interpretation: More information helps the consumers make
better decisions on keeping the original match at hand or taking the new match arising from one
more round of search. The red curve is an example of a feasible incremental benefit function.

Given any feasible incremental benefit function c ∈ CF , we can deduce the underlying signal
distribution G by G(x) = 1 + c′(x+). This formula, together with G(x−) = 1 + c′(x−), allows
us to infer two qualitative features of G directly from the graph of c, which will be helpful in
understanding the following analysis. First, if the incremental benefit function c has a kink, that
is, is not differentiable, at some point x ∈ [0, 1], then G has an atom at x. This is because G(x) −
G(x−) = c′(x+) − c′(x−) > 0.15 Second, if c is a straight line segment over some interval [x′, x′′],
then the signals in (x′, x′′) have zero probability under G. This is because G(x) = 1 + c′(x+) is a
constant over (x′, x′′). The graph of cF0

in Figure 1 provides an example of both features. Because
cF0

is a straight line segment over [0, μ] and [μ, 1], F0 places no mass over (0, μ) and (μ, 1).
Because c′(0+) = −1 and c′(1−) = 0, neither x = 0 nor x = 1 is an atom of F0. Thus, F0 places
all the probability mass at the single point x = μ, at which cF0

has a kink, implying that F0 is the
totally uninformative signal distribution.

� Construction. We now construct a parametric class of signal distributions in terms of
their incremental benefit functions. Each signal distribution is characterized by three parameters
a, b, and v, and induces equilibrium (b, v). We will also show that every equilibrium consumer
surplus that can arise under a feasible signal distribution can be attained by a signal distribution
in this class.

Let b̄ be the value satisfying cF (b̄) = s. For any a ∈ [0, μ − s), b ∈ [μ − s, b̄] and v ∈
[a, b), define

ca,b,v(x) ≡

⎧⎪⎨
⎪⎩

μ − x, if x ∈ [0, a],

s − ρ(x − b), if x ∈ (a, b],

max
{
s − π log x−v

b−v
, 0

}
, if x ∈ (b, 1],

(5)

where ρ ≡ μ−s−a
b−a

and π ≡ ρ(b − v). Figure 2 illustrates a typical ca,b,v in panel (a) and its under-
lying signal distribution in panel (b). Over [0, a], ca,b,v coincides with cF0

(the downward-sloping
45-degree line). Then, it becomes the straight line segment that connects the points (a, μ − a)
and (b, s). The corresponding slope is just −ρ = −μ−s−a

b−a
. This construction of ca,b,v over [0, b]

creates a kink at a, which corresponds to an atom signal in the signal distribution. Because this
signal a is the only signal below b, we refer to it as the low match value atom.16 Over [b, 1], ca,b,v

takes a particular functional form, which leads to a continuum of signals and potentially an atom
(x̄ in Figure 2) above b. These signals are distributed in a specific way to ensure that the firms’
pricing incentives are satisfied, as we shall see in Proposition 1.

It is easy to see that ca,b,v is convex and satisfies ca,b,v ≥ cF0
by construction. Hence, ca,b,v

is feasible if and only if ca,b,v ≤ cF . Let U ⊆ CF be the set of all feasible ca,b,v’s.17 The following
proposition states that it is without loss of generality to restrict attention to U to find a consumer-
optimal signal distribution.

Proposition 1. Every ca,b,v ∈ U induces equilibrium (b, v). Conversely, if c ∈ CF induces equilib-
rium (b, v), then there exists a′ and b′ such that ca′,b′,v ∈ U .

The first part of Proposition 1 comes directly from the way ca,b,v is constructed. Because
ca,b,v(b) = s by construction, the consumers’ search incentive condition (2) is satisfied. To see that

15 Define c′(0−) = −1 and c′(1+) = 0.
16 If b = μ − s, this kink disappears. In this case, the value of a is irrelevant and it is no longer an atom.
17 The set U may be empty. As we will see in Corollary 1, U = ∅ if and only if the search market (F, s) admits

active search.
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FIGURE 2

ILLUSTRATION OF CONDITIONAL UNIT-ELASTIC DEMAND SIGNAL DISTRIBUTIONS

the firms’ pricing incentive constraints are also satisfied, we can divide the constraints in (3) into
two groups: downward and upward incentive constraints. The downward incentive constraints
involve deviation to those cutoffs below b. They ensure that no firm has an incentive to charge a
lower price than p = b − v. These incentive constraints are satisfied due to the crucial restriction
v ≥ a: deviating to a cutoff x ≤ a involves charging a non-positive price x − v and deviating to a
cutoff x ∈ (a, b) would not change the demand, that is, −c′

a,b,v(x−) = −c′
a,b,v(b−).

The upward incentive constraints involve deviation to those cutoffs above b. They ensure
that no firm has an incentive to charge a higher price than p = b − v. These constraints are sat-
isfied because each firm faces a demand curve with unit elasticity. To see this, observe that each
firm’s demand from cutoff x ∈ (b, x̄] is −c′

a,b,v(x−) = π

x−v
, where π by definition equals the equi-

librium expected profits: −c′
a,b,v(b−)(b − v). Therefore, −c′

a,b,v(x−)(x − v) = −c′
a,b,v(b−)(b − v)

for x ∈ [b, x̄], and firms are in fact indifferent between any cutoffs in [b, x̄]. No firm has an in-
centive to deviate to cutoff x > x̄ either, as the demand would be zero.

In the equilibrium, firms charge price b − v, and consumers keep searching if and only if
they observe the low match-value atom a on the equilibrium path. The corresponding probability
of trade per match is just ρ, and the expected profits of a matched firm are just π .

The second part of Proposition 1 asserts that U is rich enough to induce every equilib-
rium consumer surplus that can arise under an arbitrary signal distribution. As a result, to find a
consumer-optimal one, we only need to focus on the incremental benefit functions in U . To show
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this result, we show that if (b, v) is an equilibrium under c ∈ CF , then either ca,b,v is feasible (if
a ≡ E[q|q < b] ≤ v), or c0,μ−s,v is feasible (if a > v).18

As a direct corollary of Proposition 1, we know that the search market (F, s) admits active
search if and only if U = ∅. Intuitively, this is the case when the search cost is not too high.

Corollary 1. There exists a threshold s∗ ∈ (0, μ) such that (F, s) admits active search if and only
if s ∈ (0, s∗].

A search market with differentiated products can be active under properly designed infor-
mation, provided the search friction is small. However, when the search friction is too large,
consumers will never participate regardless of the information available to them and the market
completely shuts down. Clearly, the threshold s∗ increases in F with respect to the mean preserv-
ing spread order. This is simply because there is more room to design information in a market
with more differentiated products.

� Discussion. In a monopoly pricing setting, Roesler and Szentes (2017) find that the con-
sumer surplus is maximized by a unit-elastic demand signal distribution. Under this signal distri-
bution, the monopolist is indifferent between prices in the support of this distribution, and trade
occurs with probability one in the consumer-optimal equilibrium. The signal distribution under-
lying ca,b,v in (5) extends this idea to the current setting, as the firms are also indifferent between
prices over a certain range in equilibrium, but there are two important generalizations.

First, the consumers’ outside option, which governs their equilibrium search behavior and
the competition between the firms, is endogenously determined in equilibrium. Because equilib-
rium is a result of the information design, it is intuitive that we should incorporate this outside
option as part of the construction of ca,b,v. This explains why the consumer surplus v, which coin-
cides with the consumers’ outside option in this stationary environment, is an explicit parameter.
Second, when b > μ − s, the signal structure ca,b,v specifies an atom a below the equilibrium
signal cutoff. In equilibrium, consumers do not purchase from the currently matched firm upon
observing this signal, even if the current trade generates positive surplus. This low match value
atom is a necessary component that reflects the dynamic nature of our environment. It serves
as a way to reveal information about low match qualities and incentivize the consumers to keep
searching for a better match.

Because the fact that firms face a unit-elastic demand strictly relies on the consumers’ en-
dogenous equilibrium search behavior, we refer to the underlying signal distribution that gives
rise to such an incremental benefit function ca,b,v as a conditional unit-elastic demand signal
distribution.

4. Consumer-optimal design

� In this section, we analyze the consumer-optimal conditional unit-elastic demand signal
distribution and its properties.

� Consumer-optimal signal distribution. By Proposition 1, a consumer-optimal signal dis-
tribution solves the following problem:

max
ca,b,v∈U

v. (6)

Proposition 2 establishes the existence and uniqueness of the optimal solution.

Proposition 2. Suppose U = ∅. Then, there is a unique consumer-optimal conditional unit-elastic
demand signal distribution.

18 The expectation E[q|q < b] is with respect to the underlying signal distribution of c.
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One way to understand the determination of the optimal signal distribution is to rewrite (6)
equivalently as

max
b∈[μ−s, b̄]

max
a∈[0, μ−s)

max
v∈[a,b)

v subject to ca,b,v ≤ cF .

Using the equilibrium identity v = b − p, we can further transform it into the form

max
b∈[μ−s, b̄]

(
b − min

a∈[0, μ−s]
min

p∈(0, b−a]
p

)
subject to ca,b,b−p ≤ cF .

This problem has a very intuitive interpretation. For every b, mina minp p subject to the feasi-
bility constraint is the minimal feasible price for total welfare b. Although the low match value
atom a does not directly appear in the objective function, its role is to determine the equilibrium
probability of trade ρ = μ−s−a

b−a
, which in turn affects the feasibility constraint in determining

the minimal price. Then, b − mina minp p corresponds to the highest possible consumer surplus
given total welfare b. Among all the feasible levels of total welfare, the designer then chooses the
optimal one that maximizes the consumer surplus.

In the monopoly pricing setting, Roesler and Szentes (2017) show that the consumer-
optimal signal distribution also maximizes the total welfare, but this is no longer the case in the
current setting. Intuitively, higher total welfare is associated with providing more information to
the consumers to find a better match, but more information disclosure also makes the market
more differentiated, which softens the price competition among the firms. More formally, we
can indeed show that the minimal feasible price is increasing with the total welfare.19 Therefore,
the optimal choice of b must balance between the total welfare and the price. A careful analysis
of how this trade-off changes with the search cost leads to the following intuitive comparative
statics result. For search cost s, let a∗(s), b∗(s), v∗(s), and ρ∗(s) be the corresponding consumer-
optimal choices of the low match value atom, equilibrium signal cutoff, consumer surplus, and
probability of trade, respectively.

Proposition 3. Assume 0 < s < s̄ < s∗.

(i) The optimal consumer surplus is strictly higher in markets with smaller search cost: v∗(s) >

v∗(s̄).
(ii) The consumer-optimal signal distributions satisfy: b∗(s) > b∗(s̄), a∗(s) ≥ a∗(s̄), and ρ∗(s) ≤

ρ∗(s̄).
(iii) As the search cost vanishes, lims↓0 v∗(s) = lims↓0 b∗(s) = 1, lims↓0 a∗(s) = E[q|q < 1], and

lims↓0 ρ∗(s) = 1 − F (1−).

Part (i) of Proposition 3 is about optimal consumer surplus. A smaller search cost is always
beneficial to consumers, as it lowers the cost involved in searching and promotes competition
among the firms. Consequently, the optimal consumer surplus strictly increases as the search
cost decreases. This simple observation plays a central role in Section 5 when we extend our
analysis to equilibria in mixed strategies and asymmetric design. Part (ii) describes how the
optimal signal distribution changes as the search cost changes. The results are mainly driven by
the intuitive fact that if a smaller probability of trade is better than a larger one for consumers
in the market with high search cost, then the same comparison between these two probabilities
of trade holds in the market with low search cost.20 Therefore, it is optimal for the designer to
induce a smaller probability of trade in a market with smaller search cost. Doing so also leads to
higher total welfare and low match value atom.

Part (iii) characterizes the limiting behavior of the optimal consumer surplus and the corre-
sponding optimal signal distribution as the search cost vanishes. In an almost frictionless mar-
ket, consumers’ search incentives and the competition among the firms will be strong enough

19 See Footnote 1 in the online Appendix for an explanation.
20 See Claim C.2 in the online Appendix.
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so that the consumer-optimal signal distribution can virtually guarantee the first-best outcome
to the consumers. Moreover, because the optimal equilibrium signal cutoff b∗(s) approaches
the best possible match, eventually all the match values below the best one will be summa-
rized by a∗(s). Thus, in the limit, a∗(s) approaches E[q|q < 1]. Consequently, the correspond-
ing optimal signal distribution converges to either the totally uninformative distribution F0 if
the best match q = 1 is not an atom of F (equivalently, F (1−) = 1), or the binary distribution
(1 − F (1−)) ◦ E[q|q < 1] + F (1−) ◦ 1 if q = 1 is an atom.

� Never consumer-optimal signal distribution. Characterizing the consumer-optimal sig-
nal distribution is rather a complicated problem in general. This is mainly because the optimiza-
tion problem (6) involves infinitely many nontrivial constraints despite its parametric nature with
only three choice variables. A more tractable and perhaps more practical question is whether we
can tell that a given signal distribution is not consumer-optimal. Knowing that a signal distribu-
tion is not consumer-optimal at least tells us that it can be improved upon.

More specifically, fix a search cost s > 0. We say a signal distribution G is never consumer-
optimal if G is not consumer-optimal for all possible true value distributions under which G is
feasible. Hence, if this G is the signal distribution in a certain market, we immediately know that
there can be better information disclosure for the consumers, even though we may not have any
knowledge about the true value distribution of this market. Equivalently, a signal distribution G is
never consumer-optimal if and only if, in the market where G itself is the true value distribution,
full information disclosure is not consumer-optimal. The following proposition provides simple
sufficient conditions for a signal distribution to be never consumer-optimal.

Proposition 4. Let G be a signal distribution. Suppose (b, v) is an equilibrium with active search
under G and b > μ − s. Let a ≡ E[q|q < b] be the conditional mean of the signals below the
equilibrium signal cutoff. If

v < b − b − a

μ − a
s, (7)

then G is never consumer-optimal. In particular, if

π ≥ s, (8)

then G is never consumer-optimal, where π is the equilibrium expected profits of a matched firm.

Loosely speaking, if a signal distribution G induces an equilibrium in which the consumer
surplus is too low compared to the total welfare, that is, condition (7), then G is never consumer-
optimal. In this case, we can find a feasible signal distribution that leads to lower total welfare but
strictly higher consumer surplus. Condition (8) is an interesting sufficient condition for (7). As
long as the equilibrium expected profits of a matched firm are greater than or equal to the search
cost, then G is never consumer-optimal. The most remarkable feature of this surprisingly simple
condition is that it does not involve the details of the signal distribution. Rather, it only relies on
quantities that are relatively easy to observe and measure: equilibrium price, probability of trade
per match, and search cost. If (8) is observed to be true in a real market, we immediately know that
the way this market discloses quality information can be improved in terms of consumer surplus.

� Example. We use the uniform value distribution F ∼ U [0, 1] to illustrate the previous
results. For this value distribution, the threshold for active search is s∗ ≈ 0.30. The red curves in
panels (a)–(d) in Figure 3 plot the parameters of the consumer-optimal conditional unit-elastic
demand signal distribution as functions of s ∈ (0, s∗). As seen, these functions are monotonic in
the directions described in Proposition 3. As search cost decreases to 0, the optimal consumer
surplus and the signal cutoff increase to the best possible match, and the probability of trade goes
to zero. Consequently, the low match value atom converges to the mean μ = 0.5. We also see
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FIGURE 3

OPTIMAL SIGNAL DISTRIBUTIONS FOR THE UNIFORM VALUE DISTRIBUTION

that the probability of trade becomes 1 when the search cost is sufficiently large. This induces
immediate purchase in equilibrium, because it is too costly for the consumers to search.

Panel (e) illustrates the corresponding consumer-optimal incremental benefit functions for
search costs s = 0.05 and s̄ = 0.15. The fact that these two curves intersect each other indicates
that the optimal signal distributions for different search costs in general are not ranked according
to the mean-preserving contraction order.

For the uniform distribution, full information disclosure also induces a unique equilibrium,
provided s ≤ 0.125. This equilibrium is characterized by total welfare (signal cutoff) bF (s) =
1 − √

2s, price pF (s) = √
2s, and consumer surplus vF (s) = 1 − 2

√
2s. The blue curves in panels

(a) and (b) illustrate vF and bF , respectively. As we can see, vF (s) < v∗(s) for all s ∈ (0, 0.125].
This is precisely because (8) holds under full information disclosure and thus uniform F is never
consumer-optimal,21 but when the search cost vanishes, the gap between v∗ and vF diminishes.
This is also intuitive. Because full information disclosure always leads to the highest possible
total welfare, the only reason why optimal information makes the consumers strictly better off
is because it induces a lower equilibrium price, but when the search cost is sufficiently small,
the competition among the firms becomes increasingly fierce so that the equilibrium price is

21 Under full information disclosure, the equilibrium probability of trade is ρF (s) = 1 − bF (s) = √
2s and each

firm’s expected profits are ρF (s) × pF (s) = 2s > s.
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already very low even under full information. As a result, there is not much room for further
improvement, and the advantage of information design completely disappears in the limit.22

5. Extensions

� In this section, we provide two extensions to our analysis. We first consider mixed strategy
equilibria. Then, we consider the possibility of asymmetric design for a prominent firm. As we
shall see, neither of these extensions can improve the consumers’ welfare.

� Equilibria in mixed strategies. So far, we have only considered pure strategy equilibria.
As mentioned in Section 2, this restriction automatically rules out some signal distributions that
can induce active search only in mixed strategies. Nonetheless, we show here that this restriction
is immaterial to the optimal consumer surplus. No consumer surplus achieved by a mixed strategy
equilibrium under a feasible signal distribution can exceed v∗(s)—the optimal consumer surplus
from pure strategy equilibria.

We continue to focus on the equilibria in which all the firms follow the same pricing strat-
egy. As a result, consumers’ optimal stopping decision is still a cutoff rule.23 Formally, a mixed
strategy equilibrium with active search under signal distribution G can be characterized by a
pair (σ, v), where σ is the firms’ mixed strategy over equilibrium signal cutoffs and v ≥ 0 is the
consumer surplus as before. Similarly as in Lemma 1, (σ, v) is an equilibrium if∫

supp(σ )

cG(b)dσ (b) = s, (9)

and, for all b ∈ supp(σ ),

−(b − v)c′
G(b−) ≥ −(x − v)c′

G(x−), ∀x ∈ [v, 1], (10)

where supp(σ ) is the support of σ . Condition (9) is a variant of condition (2). It states that
the average incremental gain from one more search is equal to the cost of one more search.24

Condition (10) states that every equilibrium signal cutoff b ∈ supp(σ ) must be optimal for the
firms. For each such b, condition (10) takes exactly the same form as condition (3). This is
because every firm is still competing with the consumers’ outside option v. When the support of
σ is a singleton, (σ, v) degenerates into a pure strategy equilibrium.

The following result states that designing signal distributions that induce equilibria in mixed
strategies can only make consumers strictly worse off compared to the optimal one among those
that induce pure strategy equilibria.

Proposition 5. Suppose (σ, v) is a mixed strategy equilibrium under feasible signal distribution
G in the market with search cost s. If supp(σ ) is not a singleton, then v < v∗(s).

The logic behind Proposition 5 is simple. If consumer surplus v is achieved by a mixed
strategy equilibrium in a market with search cost s, it must be achievable by a pure strategy
equilibrium in a market with search cost greater than s. To see this, observe that the consumers’
incentive constraint (9) implies that there exists an equilibrium cutoff b̃ ∈ supp(σ ) such that

22 This discussion holds for general value distribution which has a positive continuous density and an increasing
hazard rate. We can show that (8) holds for such value distributions under full information disclosure. We thank an
anonymous referee for pointing this out.

23 As before, we continue to assume that the consumers accept the current offering when they are indifferent, for
ease of exposition.

24 Given the firms’ mixed strategy σp over prices, consumers’ optimality condition requires

v = −s +
∫

supp(σp )

∫
[0,1]

max{q − p, v}dG(q)dσp(p).

Condition (9) is obtained by subtracting both sides by v and letting σ be the distribution of p + v.
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cG(b̃) > s. The firms’ incentive constraint (10) for b̃ then implies that (b̃, v) is an equilibrium
under G in the market with search cost s̃ ≡ cG(b̃) > s. Thus, v cannot exceed v∗(s̃), but this in
turn implies that v < v∗(s) by Proposition 3, as smaller search cost leads to strictly higher optimal
consumer surplus from pure strategy equilibria.

� Asymmetric design for a prominent firm. Throughout the previous analysis, we have
focused on symmetric information disclosure. All firms face the same information technology
and their signal distributions are identical. In principle, a platform does not face such a restriction.
It can design different webpage layouts and impose different information disclosure criteria for
different firms. We explore this possibility by considering the situation where one firm is more
prominent than the others and all consumers match with this firm first, and where the designer
can adopt asymmetric designs for the prominent and non-prominent firms.

Prominence is a very natural phenomenon in the online world. For example, platforms can
always place one particular firm at the top of the page when displaying the results from its search
engine, and consumers are likely to examine the product from that firm first. Under a fixed signal
distribution, for example, full information disclosure, Armstrong, Vickers, and Zhou (2009) sys-
tematically analyze how such prominence may affect the equilibrium and welfare of the search
market. One of their findings is that if there are infinitely many firms and the signal distribution
is identical for all firms, then prominence has no impact on prices and welfare; it merely redis-
tributes the industry surplus among the firms. We show below that this result continues to hold,
even though asymmetric design between the prominent and non-prominent firms is allowed.

Formally, suppose firm 1 is made prominent and so is sampled first by all consumers. Let
G1 be its signal distribution. All other firms are non-prominent. If they are sampled, they are
sampled randomly as before. Suppose they share the same signal distribution G. Imagine the
situation where the consumers have sampled the prominent firm but rejected its offering. They
now face the same situation as they do in the previously analyzed symmetric design case. If G
induces an equilibrium with active search, consumers will search these non-prominent firms and
obtain surplus v ∈ [0, v∗(s)].25 If, instead, G does not induce such an equilibrium, they simply
stop searching and obtain v = 0. Hence, when consumers are matched with the prominent firm,
they simply compare their current surplus q − p1 with their continuation surplus v, where p1 is
the prominent firm’s price. If the overall market is active, that is, they search at least the prominent
firm, the overall consumer surplus is −s + ∫ 1

0
max{q − p1, v}dG1(q) = v − s + cG1

(b1), where
b1 ≡ v + p1. Therefore, this asymmetric design problem can be formulated as choosing an c1 ∈
CF for the prominent firm and a continuation surplus v ∈ [0, v∗(s)] for consumers, subject to the
prominent firm’s incentive constraint:

max
v, c1

v − s + c1(b1)

s.t. v ∈ [0, v∗(s)] and c1 ∈ CF ,

∃b1 s.t. − (b1 − v)c′
1(b1−) ≥ −(x − v)c′

1(x−), ∀x ∈ [v, 1].

(11)

The next proposition tells us that the value of (11) is just v∗(s).

Proposition 6. The optimal consumer surplus under asymmetric design for a prominent firm is
still v∗(s). It is achieved by the consumer-optimal symmetric design for all firms.

Therefore, there is no way to make the consumers strictly better off under asymmetric design
for a prominent firm than under the simple optimal symmetric design. This implies that the afore-
mentioned finding in Armstrong, Vickers, and Zhou (2009) still holds, even though asymmetry

25 Using an argument similar to the proof of Corollary 1, we can easily show that the set of achievable consumer
surplus is exactly the whole interval [0, v∗(s)].
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is allowed. With infinitely many firms, prominence under the optimal design only redistributes
the industry surplus between the prominent and non-prominent firms, and it has no impact on the
optimal consumer surplus.

6. Concluding remarks

� This article has investigated the information design problem in a competitive environment
where consumers search sequentially for price and product fitness. We constructed a parametric
class of signal distributions that generalize the analysis in Roesler and Szentes (2017) to incor-
porate consumers’ search incentives and endogenous outside option, and which is rich enough
to achieve every equilibrium consumer surplus that can possibly arise under an arbitrary signal
distribution. Relying on the relatively simple parametric nature of this class, we established the
existence and uniqueness of the consumer-optimal signal distribution and characterized how the
optimal signal distribution changes as with the search friction. We also provided a very simple
partial identification for when the information disclosure in a market is not consumer-optimal.

This article only considered consumer-surplus maximization as the information designer’s
objective. This objective is natural for online rating platforms, as we discussed in the introduc-
tion, but there are also other platforms, such as eBay, whose revenues come from the commission
fees they charge from the sellers. These platforms would intuitively adopt strategies that favor
the sellers and the industry more than the consumers. Then, it is also natural to ask what the
industry-optimal information design would be for these markets.

Admittedly, our analysis for the consumer-optimal design is not readily extendable to the
industry-optimal design. Although U is rich enough to achieve every feasible equilibrium con-
sumer surplus, there is no guarantee that this class can achieve the highest possible industry
surplus. Intuitively, this is due to the restriction a ≤ v that we imposed in the construction of
every ca,b,v. Although this restriction is important in our analysis to guarantee the firms’ down-
ward incentives, it imposes exogenous caps on the equilibrium prices.26 Therefore, to obtain the
industry-optimal design, new signal distributions other than those in U must be constructed. We
leave it for future research.

Appendix: Proof of Proposition 1

For ease of exposition, let h(x; a, b, v) ≡ s − (μ−s−a)(b−v)
b−a

log x−v
b−v

. Thus, ca,b,v(x) = max{h(x; a, b, v), 0} for x ∈
[b, 1].

Proof of Proposition 1. We have explained the first part in the main text. Here, we show the second part. Suppose c ∈ CF

induces equilibrium (b, v). Let a ≡ E[q|q < b], where the expectation is with respect to the signal distribution of c. If
b > μ − s, then a = μ−s+bc′ (b−)

1+c′ (b−)
and is just the x-coordinate of the intersection of cF0 over [0, μ] and the left tangent line

to c at b. See both panels in Figure A1 for an illustration. If b = μ − s, then a = 0. Let π ≡ −c′(b−)(b − v) be the
equilibrium expected profits of a matched firm under c. Note that π can also be written as π = (μ−s−a)(b−v)

b−a
. We discuss

two cases.
First, consider the case v ≥ a. We show ca,b,v ≤ c. Panel (a) in Figure A1 provides an illustration of this case.

Because ca,b,v coincides with cF0 over [0, a] and is the left tangent line of c at b over [a, b], we know that ca,b,v(x) ≤ c(x)
for x ∈ [0, b]. Because (b, v) is an equilibrium under c, firms’ upward incentive constraints imply

c′(x−) ≥ − π

x − v
= − (μ − s − a)(b − v)

(b − a)(x − v)
= hx(x; a, b, v), ∀x ∈ [b, 1]. (A1)

Hence, for x ∈ (b, 1],

h(x; a, b, v) = h(b; a, b, v) +
∫ x

b

hx(x̃; a, b, v)dx̃ ≤ c(b) +
∫ x

b

c′(x̃−)dx̃ = c(x),

26 For example, if the value distribution is uniform and the search cost is s = 0.125, then full information disclosure
is industry-optimal. This is because its equilibrium achieves the first best total welfare b̄ = 1 − √

2s = 0.5, which in turn
is fully extracted by the industry as p = √

2s = 0.5. If this level of industry surplus was achieved by some ca,b,v ∈ U ,
we must have b = b̄ and v = 0. The restriction a ≤ v then requires a = 0, but it is straightforward to see that c0,b̄,0 is
not feasible.
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FIGURE A1

PROOF OF PROPOSITION 1

where the inequality comes from (A1) and h(b; a, b, v) = s = c(b). Therefore, ca,b,v(x) ≤ c(x) for x ∈ (b, 1] too.
Next, consider the case v < a. We show that c0,μ−s,v ≤ c. Panel (b) in Figure A1 provides an illustration. Because

c0,μ−s,v coincides with cF0 over [0, μ − s], we know that c0,μ−s,v(x) ≤ c(x) for x ∈ [0, μ − s]. Because h(x; 0, μ − s, v) <

s ≤ c(x) for x ∈ (μ − s, b], we know that c0,μ−s,v(x) ≤ c(x) for x ∈ (μ − s, b]. Because a = μ−s+bc′ (b−)
1+c′ (b−)

and v < a, we
know that π < μ − s − v. Because (b, v) is an equilibrium under c, firms’ upward incentive constraints imply

c′(x−) ≥ − π

x − v
> −μ − s − v

x − v
= hx(x; 0, μ − s, v), ∀x ∈ (b, 1]. (A2)

Hence, for x ∈ (b, 1],

h(x; 0, μ − s, v) = h(b; 0, μ − s, v) +
∫ x

b

hx(x̃; 0, μ − s, v)dx̃ < c(b) +
∫ x

b

c′(x̃−)dx̃ = c(x),

where the inequality comes from (A2) and h(b; 0, μ − s, v) < s = c(b). Therefore, c0,μ−s,v(x) ≤ c(x) for all x ∈ (b, 1]
too.vv �
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