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a b s t r a c t

This paper studies symmetry among countably infinitely many agents who randomly enter into a
stochastic process, one for each period. Upon entry, they observe only the current period signal and
try to draw inference about the underlying state governing the stochastic process. We show that there
exist random entry models under which agents are ex post symmetric. That is, all agents have identical
posterior belief about the underlying states, although they are not ex ante symmetric. The form of the
posterior belief is uniquely pinned down by ex post symmetry and a stationarity condition. Our results
provide a common prior foundation for the model studied in Liu and Skrzypacz (2014).
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1. Introduction

This paper studies symmetry among countably infinitely many
gents who randomly enter into a stochastic process, one for each
eriod. Upon entry, they observe only the current period signal
nd try to draw inference about the underlying state governing
he stochastic process. We investigate whether symmetry among
hese agents is consistent with common prior of entry.

It is well known that no random entry model can make
nfinitely many entering agents ex ante symmetric, i.e., that they
ave identical beliefs about when they enter prior to entry.
onetheless, our first main result proves that there do exist ran-
om entry models that make infinitely many entering agents ex
ost symmetric, that is, they have identical posterior belief about
he underlying state provided they have the same observation
pon entry. The most important property of such entry models
s that the length of entry can be unbounded but the whole
rocess cannot last forever. Such ex post symmetric random entry
odels are not unique. But our second main result shows that if
n additional stationarity condition is imposed, all these models
re equivalent in the sense that they all result in the same form
f posterior beliefs. This implies that in applications, the actual
hoice of such a random entry model is immaterial, as long as
nly posterior beliefs are concerned.1

✩ This paper is based on Chapter 1 of my Ph.D. dissertation at the University
f Pennsylvania. I am deeply indebted to George Mailath for his guidance and
ncouragement since the beginning of this study. I also thank the editor, an
nonymous referee, Aislinn Bohren, Mustafa Dogan, Sangmok Lee, Fei Li, Mallesh
ai, Andrew Postlewaite, Jianrong Tian, Rakesh Vohra, Yuichi Yamamoto, and
any seminar participants for their insightful comments, which helped me

remendously. I acknowledge the financial support of the NSFC (Grant No.
1803004). All remaining errors are mine.

E-mail address: juhu@nsd.pku.edu.cn.
1 In a related paper, Boylan (1992) studied a pairwise random matching
odel among countably infinitely many agents, each of whom can be one of
https://doi.org/10.1016/j.jmateco.2020.05.007
0304-4068/© 2020 Elsevier B.V. All rights reserved.
We also show how our results can be applied to the reputation
game analyzed in Liu and Skrzypacz (2014). In their model, an in-
formed long-run player interacts with a sequence of uninformed
short-lived players who enter the game at random times and only
observe the long-run player’s actions in the recent few periods.
In order to focus on the symmetric behavior of the short-lived
players, they assume that all short-lived players hold identical
beliefs about when they enter, which is inconsistent with com-
mon prior of entry. Our existence result of ex post symmetric
random entry models provides a remedy for this discrepancy. An
easy application of our results shows that their model and anal-
ysis are indeed consistent with the common prior assumption,
because the symmetric behavior of the short-lived players can be
guaranteed if they are ex post symmetric.

The rest of the paper is organized as follows. Section 2 presents
the random entry and learning model. We introduce the key
notion of ex post symmetry. Section 3 contains the analysis and
results of the paper. Section 4 provides an application and discuss
how our results can be applied to the reputation game studied in
Liu and Skrzypacz (2014). All missing proofs can be found in the
Appendix.

2. Random entry and learning model

Let Ω be the set of all possible states of nature. For conve-
nience, we assume that Ω is finite.2 A generic element of Ω is
enoted by ω. Let π ∈ ∆|Ω|−1 be a prior distribution over the
tates with full support. The prior probability of a state ω ∈ Ω

finitely many types. Although it cannot be the case that all matches are equally
likely, he showed that as long as only matched types are concerned, there exist
random matching models under which agents are symmetric in terms of their
partners’ types.
2 All the results in this paper also hold if Ω is countable.

https://doi.org/10.1016/j.jmateco.2020.05.007
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is denoted by πω . Let S be a finite signal space.3 A generic signal
will be denoted by s ∈ S. The set of the states of nature Ω and the
signal space S together define an infinite dimensional measurable
space (Ω × S∞, G), where G is the usual product σ -algebra over
Ω × S∞. Every probability measure P over (Ω × S∞, G ), whose
marginal distribution over Ω is π , defines a signal process as
follows. In period t = 0, nature selects a state ω ∈ Ω according
to the prior distribution π . In every period t ≥ 1, a signal st ∈ S
is generated, and the evolution of the signals is governed by
the marginal distribution of signals, given the realized state ω,
Pω( · ) ≡ P( · | {ω} × S∞). Let P be the set of all such signal
processes. To avoid trivial cases, we assume that both Ω and S
contain at least two elements.

There are countably many agents, indexed by i = 1, 2, . . ..
The set of all agents is simply the set of natural numbers N.
Imagine the situation where agents enter into the signal process
at random times, one agent for each period. Upon entry, each
agent does not observe how long the signal process has been
running. In other words, they do not know the calendar time of
their entry. The only observation each agent has is just the current
signal. Based on the observed signal, each agent then draws
inference about the underlying state. Both the signal process P ∈

P and the random entry rule are common knowledge among the
agents. We are interested in whether all the agents can draw
identical inferences when they enter and observe the same signal.
To answer this question, we first need to formalize their random
entry and learning.

2.1. Random entry model

Intuitively, a random entry model specifies who enters in
which period with what probability. Formally, for each n =

1, 2, . . ., define

Θn ≡
{
(i1, i2, . . . , in) ∈ Nn

| is ̸= it if s ̸= t
}
,

and define

Θ∞ ≡
{
(i1, i2, . . .) ∈ N∞

| is ̸= it if s ̸= t
}
.

Let

Θ ≡

=∞⋃
n=1

Θn

be the union of all these sets, where the upper bound ‘‘= ∞’’
means that n = ∞ is also included. Every element θ ∈ Θ refers
to a particular entry process. In particular, it specifies the length
and order of this entry process. For example, the entry process
θ = (i1, i2, . . . , in) ∈ Θn specifies that n agents, i1, i2, . . ., in, will
enter into the signal process. Agent i1 enters in period t = 1.
Agent i2 enters in period t = 2, and so on. This entry process
will continue until agent in enters in period t = n. For another
example, an entry process θ ∈ Θ∞ lasts forever and it specifies
the order of entry of infinitely many agents. The requirement that
is ̸= it if s ̸= t in the above construction simply means that all
agents are short-lived: each agent enters at most once. If an agent
enters in period s, then he cannot enter in period t again. The set
Θ contains all the possibilities of entry processes.

For every entry process θ ∈ Θ and each agent i ∈ N, define
agent i’s entry period as4

τi(θ ) ≡

{
t, if it = i,
+∞, if is ̸= i for all s ≥ 1. (1)

3 Similarly, we assume finite signal space just for convenience. All the results
can be extended to the case where S is a compact metric space, e.g., a real
interval.
4 By construction, for each θ ∈ Θ , there exists at most one t such that i = i.
t
Thus, the mapping τi : Θ → N ∪ {+∞} is the random time
at which agent i enters. For example, the set (τi = t) ≡ {θ ∈

Θ | τi(θ ) = t} represents the event that agent i enters in period
t and (τi = +∞) is the event that agent i never enters. Let E be
the smallest σ -algebra of Θ containing all the events of the form
(τi = t) for some i ≥ 1 and t ≥ 1. We are now ready to define a
random entry model.

Definition 1. A random entry model is a probability measure µ

over (Θ, E ).

The entry of agents governed by a random entry model µ can
be understood as a two-stage randomization. In the first stage,
the length n = 1, 2, . . . ,+∞ of the entry process is realized
according to the distributions {µ(Θn)}=∞

n=1. In the second stage,
conditional on the realized length n, a particular entry process
θ = (i1, i2, . . . , in) ∈ Θn or θ = (i1, i2, . . .) ∈ Θ∞ if n = ∞

is chosen according to the conditional distribution µ( · |Θn). For
finite n, agents i1, i2, . . . , in enter successively in each period t =

1, . . . , n and then the entry process ends. For n = ∞, agents
i1, i2, . . . enter successively in each period and the entry process
lasts forever.

A random entry model µ is also agents’ common prior about
the entry process. From this common prior, each agent forms his
prior belief about when he enters. Denote by µt

i ≡ µ(τi = t) the
probability that agent i ∈ N enters in period t ∈ N.

Our formulation of a random entry model is very general. It
treats many of the usual entry models as its special cases. A
trivial example is that µ puts unit mass on the entry process
(1, 2, . . .) ∈ Θ∞. In this entry model, agent i enters in period
t = i deterministically. Upon entry, agent i knows for sure that
the current period is t = i because µt

i = 1 if t = i and
µt

i = 0 if t ̸= i. This entry model is widely used in the study
of long-run interactions where one side is a sequence of short-
lived players.5 Another example is the symmetric entry of a finite
population. That is, the random entry model µ is the uniform
distribution over the set of all permutations of 1, . . . , n for some
finite n. In this case, all agents hold identical belief about their
entry time. In particular, each agent’s belief about his entry time
is just the uniform distribution over t = 1, . . . , n, i.e., µt

i = 1/n
for 1 ≤ i, t ≤ n. Thus, upon entry, every agent thinks that he is in
ne of the first n periods equally likely. This is the random entry

model used in Guarino et al. (2011) and Monzón and Rapp (2014)
for studying observational learning with position uncertainty of a
finite population.

In both of these two examples, the length of entry is fixed.
It is either infinity in the first example or a finite number of
periods in the second example. However, our formulation of a
random entry model has a much greater generality in terms of
the entry length. In particular, it allows any arbitrary mixture
between entry processes of different lengths. As we will see soon,
this is crucial for our results.

2.2. Learning

Suppose the signal process is P ∈ P and the random entry
model is µ. The two probability spaces (Ω × R∞, G , P) and
(Θ, E , µ) together form a product probability space (Ω × S∞

×

Θ, F , P ⊗ µ), where F and P ⊗ µ are the corresponding prod-
uct σ -algebra and product measure respectively. The probability
measure P ⊗ µ now governs both the evolution of signals and
entry. Notice that by this formulation, we implicitly assume that
the signal process and entry are independent.

5 See, for example, Chapter 15 in Mailath and Samuelson (2006) for standard
reputation games.
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When agent i ∈ N enters, he only observes the current period
ignal s. Based on this information, he updates his belief about
he underlying state ω ∈ Ω from the common prior P ⊗ µ via
ayes’ rule. His posterior belief then becomes
P⊗µ

i (ω|s) ≡P ⊗ µ
(
ω
⏐⏐ sτi = s, τi < ∞

)
=

πωP ⊗ µ
(
sτi = s, τi < +∞ | ω

)∑
ω′ πω′P ⊗ µ

(
sτi = s, τi < +∞ | ω′

)
=

πω

∑
∞

t=1 µt
i Pω(st = s)∑

ω′ πω′

∑
∞

t=1 µt
i Pω′ (st = s)

, (2)

whenever the denominator is positive.

2.3. Ex post symmetry

From (2), it is clear that agents’ posterior beliefs about the
underlying states depend not only on the signal process, but also
on their beliefs about their own entry time which is determined
by the common random entry model µ. Generally speaking, two
agents may draw different inferences about the states even if they
have observed the same signal upon entry, because their beliefs
about entry time differ. The objective of this paper is to seek those
random entry models that lead to identical posterior beliefs across
all entering agents for all signal processes. The following definition
formalizes this idea.

Definition 2. A random entry model µ satisfies ex post symmetry
(EPS) if for all i, j ∈ {k ∈ N | µ(τk < ∞) > 0} and every signal
process P ∈ P , we have

ν
P⊗µ

i (ω|s) = ν
P⊗µ

j (ω|s), ∀ω ∈ Ω, s ∈ S, (3)

whenever both sides are well defined.

Hence, if a random entry model µ satisfies EPS, all entering
agents are always ex post symmetric: their posterior beliefs about
the underlying states are independent of their identities. Without
any further requirement on a random entry model µ, the exis-
tence of µ that satisfies EPS is straightforward. In fact, any entry
model that makes the entering agents ex ante symmetric satisfies
EPS.

Definition 3. A random entry model µ satisfies ex ante symmetry
if for all i, j ∈ {k ∈ N | µ(τk < ∞) > 0}, we have

µt
i = µt

j , ∀t ≥ 1.

All the entering agents under a random entry model that
satisfies ex ante symmetry have identical belief about when they
enter. According to (2), in all signal processes, these agents must
have the same posterior belief about the underlying states, pro-
vided they observe the same signal. Thus, ex ante symmetry
implies EPS. An example of such random entry models is the
aforementioned uniform entry model of a finite population.

A more interesting question is whether there exists a random
entry model that induces infinite population to enter and satisfies
EPS. The answer to this question becomes much less obvious than
the finite entry case. The difficulty is because of the following
well-known impossibility result, which points out the conflict
between entry of infinitely many agents and ex ante symmetry
when agents have a common prior of the entry process.

Lemma 1. If a random entry model µ induces an infinite population
to enter, i.e., |{k ∈ N | µ(τk < ∞) > 0}| = ∞, then the beliefs about
entry time must be different across the entering agents. In other
words, µ cannot satisfy ex ante symmetry.
The reason behind Lemma 1 is rather simple. Suppose agent
1 enters in the first period with positive probability under a
random entry model µ. If µ satisfies ex ante symmetry, then
every agent who enters the process with positive probability
must enter in the first period with the same probability as agent 1
does. If µ induces infinitely many agents to enter, the sum of the
probabilities of each agent entering in the first period becomes
infinity. This is impossible, since this sum is the probability of
the event that someone enters in the first period.

In the next section, we show that there do exist random entry
models that induce an infinite population to enter and satisfy EPS,
despite the fact that the entering agents are ex ante asymmetric.

3. Results

3.1. A characterization of EPS

The following lemma provides a simple characterization of
EPS. It reduces EPS into a condition on the prior belief ratios
between every pair of entering agents. A random entry model µ

satisfies EPS if and only if these ratios are constant over time for
every pair of entering agents.

Lemma 2. Let µ be a random entry model and I ≡ {i ∈ N | µ(τi <

∞) > 0} be the set of all entering agents. Then µ satisfies EPS if and
only if for all i, j ∈ I , there exists cij > 0 such that

µt
i = cijµt

j , ∀t ≥ 1. (4)

Lemma 2 provides a useful guidance for constructing the de-
sired random entry models. It is straightforward that if (4) is
satisfied for all pairs of entering agents, then µ satisfies EPS
by the posterior belief formula (2). Conversely, condition (4) is
a consequence of our requirement for EPS: the property that
the entering agents with the same observation draw the same
inference should hold not only for one particular signal process,
but for all possible signal processes. In fact, if condition (4) is
violated, then we can always construct a signal process in which
the two agents have different posterior beliefs after observing
some signal. Since µt

i /µ
t ′
i is the likelihood ratio of agent i entering

in periods t and t ′, if µt
i /µ

t ′
i ̸= µt

j /µ
t ′
j for some entering agents i, j

and some periods t and t ′, then these two agents have different
conditional beliefs about when they enter, given that they enter
in either period t or t ′. Intuitively, in a signal process in which a
signal only occurs in periods t and t ′, these two agents generally
would have different posterior beliefs about the underlying states
after observing this signal.6

Lemma 2 also implies that EPS imposes a restriction on the
length of entry. Every random entry model that satisfies EPS must
stop in finite time with probability one.

Corollary 1. If the random entry model µ satisfies EPS, then
µ(Θ∞) = 0.

6 For the necessity part to hold, we do require that the set of signal processes
onsidered is rich enough. For example, if EPS is weakened to the requirement
hat (3) holds for only one particular signal process P , then condition (4) need
ot hold. One trivial example is a completely uninformative signal process P .

For this signal process, (3) holds for every random entry model. However, the
requirement that (3) holds for every signal process in the definition of EPS is
stronger than necessary for condition (4). For condition (4), it is enough to have
a sequence of signal processes {Pk

}k≥0 in which (i) {Pk
ω}k≥0 are identical for all

but one state ω̃; and (ii) in terms of the marginal distribution of signals in each
period, Pk

ω̃
differs from P0

ω̃
only in period k ≥ 1. In a reputation model studied

in Hu (2016), such sequence of signal processes can endogenously arise when
the players adopt specific strategies (Lemmas A.8.2 and A.8.3).
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The intuition behind this result is straightforward. If µ satisfies
EPS, then the probability that some agents enter in period t is
proportional to the probability that a certain agent, say agent
1, enters in period t . More importantly, the coefficient of pro-
portionality is a constant over time. If the random entry model
lasts forever with positive probability, i.e., µ(Θ∞) > 0, then the
probability that some agent enters in period t must be bounded
away from zero, for every t . This in turn requires that agent 1’s
probability of entering in period t be bounded away from zero, for
every t . But we know this is impossible, since the total probability
that agent 1 enters is bounded above by 1.

Notice that Corollary 1 does not imply that a random entry
model that satisfies EPS must stop after a certain finite number
of periods. But it does explain our formulation of random entry
models. To have a random entry model that satisfies EPS and
in which there is entry with positive probability in every period
t ≥ 1, it is necessary to allow mixture between entry processes
of different lengths. This is the most important feature of our
formulation of random entry models.

3.2. Main results

We now proceed to show that there do exist random entry
models that satisfy EPS and in which there is entry with positive
probability in every period t ≥ 1. Corollary 1 implies that such
random entry models must be a nontrivial mixture over the
events {Θn}n≥1. The following condition imposes an additional
requirement on the mixture.

Definition 4. A random entry model µ satisfies stationarity (S)
if there exists δ ∈ (0, 1) such that

µ

( ⋃
k≥n+1

Θk

⏐⏐⏐⏐⏐⋃
k≥n

Θk

)
= δ, ∀n ≥ 1.

In this case, we call δ the continuation probability.

Stationarity is best understood from an outside observer’s
point of view. This outside observer has the same common prior
about the entry process as the agents. In addition, he observes
each entry. If he observes that n agents have entered, then his
belief about the next entry is µ(∪k≥n+1Θk|∪k≥nΘk). Thus, if µ
satisfies S, the outside observer’s belief will be stationary: he
always believes that one new agent will enter in the next period
with probability δ, regardless of how many agents have entered
in the past.

It is easy to see that S is equivalent to the geometric distribu-
tion over the length of the entry process, i.e., µ(Θn) = (1−δ)δn−1

for all n ≥ 1. In such a random entry model, infinitely many
agents will enter. By Lemma 1, they must be ex ante asymmetric.
Nonetheless, the following proposition, which is our first main
result, shows that there exist random entry models that satisfy S
and make all agents ex post symmetric.

Proposition 1. For every δ ∈ (0, 1), there exists a random entry
odel that satisfies EPS and S with continuation probability δ.

Proof. Fix any δ ∈ (0, 1). We explicitly construct a desired
random entry model. For each n ≥ 1, let µ({θn}) ≡ (1 − δ)δn−1

where θn = (n, n − 1, . . . , 1) ∈ Θn. For all other θ ∈ Θ ,
let µ({θ}) ≡ 0. Clearly, µ is a probability measure over Θ . By
construction, µ(Θn) = µ({θn}) = (1−δ)δn−1. Hence, S is satisfied.
Moreover, for each agent i ≥ 1 and period t ≥ 1, agent i enters
n period t if and only if agent i+ t − 1 enters in period 1, if and
only if θi+t−1 is realized. Thus µt

i = µ(τi = t) = µ({θi+t−1}) =

1 − δ)δi+t−1. Therefore, µt
i = δi−jµ

j
t for all agents pair i, j ≥ 1
and period t ≥ 1. By Lemma 2, µ satisfies EPS. □ a
The random entry model µ we constructed in the above proof
is not the unique one that satisfies EPS and S. For instance, µ◦ζ−1

also satisfies all the required conditions, where ζ : N → N
is any permutation of the agents. Despite this multiplicity, the
following proposition, which is our second main result, points out
the ‘‘equivalence’’ between all these random entry models. That
is, different random entry models that satisfy EPS and S with the
same continuation probability must lead to the same posterior
belief. This is because EPS and S, rather than the details of the
random entry models, can jointly pin down the form of posterior
beliefs.

Proposition 2. Let µ be a random entry model that satisfies EPS
and S with continuation probability δ ∈ (0, 1). If the signal process is
P ∈ P , then the common posterior belief among the entering agents
is

νP⊗µ(ω|s) =
πω

∑
∞

t=1 δt−1Pω(st = s)∑
ω′ πω′

∑
∞

t=1 δt−1Pω′ (st = s)
, ∀ω ∈ Ω, s ∈ S, (5)

henever the denominator is positive.

roof. Without loss of generality, assume agent 1 enters with
ositive probability under µ. Because of EPS, we only need to
how that agent 1’s posterior belief is given by (5). By Lemma 2,
or every agent i ≥ 1, there exists ci1 ≥ 0 such that µt

i = ci1µt
1

or every period t ≥ 1. Thus,
∑

i µ
t
i = µt

1
∑

i ci1 for all t ≥ 1.
ecause ∪i(τi = t) = ∪n≥tΘn, we know

i

µt
i = µ(∪i(τi = t)) = µ(∪n≥tΘn) =

∑
n≥t

(1 − δ)δn−1
= δt−1,

here the penultimate equality comes from S. Therefore, we have

t
1 =

δt−1∑
i ci1

, ∀t ≥ 1.

Plugging this expression into (2) yields

νP
1 (ω|s) =

πω

∑
∞

t=1 δt−1Pω(st = s)∑
ω′ πω′

∑
∞

t=1 δt−1Pω′ (st = s)
, ∀ω ∈ Ω, s ∈ S,

hich is exactly (5). This completes the proof. □

. Application

Liu and Skrzypacz (2014) study a reputation game between an
nformed long-run player and a sequence of uninformed short-
ived players, where the short-lived players observe only the last
ew periods of the long-run player’s actions instead of the full
istory. As is the case in standard reputation games, the long-
un run player can be either a commitment type who plays the
ame action constantly over time, or a strategic type who chooses
ctions to maximize his discounted long-run expected payoff.
The short-lived players do not know the type of the long-

un player. Upon entry, they have to form their posterior beliefs
bout the type of the long-run player, based on their priors and
bservations. Liu and Skrzypacz (2014) do not explicitly model
he entry process of the short-lived players. Rather, to make the
odel tractable, Liu and Skrzypacz (2014) assume that all the
gents have an identical prior about when they enter. One way
o understand this assumption is to assume that the short-lived
layers in fact enter in a fixed order. Moreover, the short-lived
gents are uncertain about their own identities and they hold an
dentical prior over their own identities.

Our model presents another view of this assumption by explic-
tly modeling the random entry process. In our entry model, the
hort-lived agents know their own identities, but are uncertain

bout their entering period. On the one hand, Lemma 1 shows
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that the assumption of common prior over entering time is not
consistent with any entry model with infinitely many agents.
On the other hand, our main results, Propositions 1 and 2, also
provide an easy remedy to reconcile this discrepancy.

To apply our results, the major change we need to make to
Liu and Skrzypacz (2014) is simply a reinterpretation of the long-
run player’s discount factor δ. To see this, let Ω ≡ {̃ξ, ξ̂} be
the type space of the long-run player. Type ξ̃ represents the
strategic type, while ξ̂ is the commitment type. The prior belief
over the types is denoted by π . Let µ be a random entry model
that satisfies EPS and S with continuation probability δ ∈ (0, 1).
Its existence is guaranteed by our Proposition 1. Both π and µ

are common knowledge among all the players. The timing of the
game is as follows. In period t = 0, nature selects the type of
the long-run player according to π and an entry process θ ∈ Θ

according to µ. From period t = 1 on, the short-lived players
enter according to θ until the entry process ends. Upon entry, the
entering agent observes the recent K ≥ 1 periods of the long-run
player’s actions. If the entering agent happens to enter in period
1 ≤ k ≤ K − 1, then he observes the full history. Then the long-
run player and the short-lived player simultaneously choose an
action a1 ∈ A1 and a2 ∈ A2 respectively.

On the short-lived players’ side, let S ≡ ∪
K
k=0A

k be the signal
space.7 The strategies of the strategic and commitment types of
the long-run player induce probability distributions, P̃ξ and P̂ξ

respectively, over S∞. The prior belief π together with P̃ξ and P̂x
then form a signal process P over Ω × S∞. Because µ satisfies
EPS, we know that given any strategy of the strategic type, all
the entering short-lived players will have the same posterior
belief about the type of the long-run player if they observe the
same signal, i.e., the recent K periods of history, upon entry. If,
in addition, the strategic type plays a stationary strategy, i.e., a
strategy that depends only on the public history s ∈ S, then all
the entering short-lived players will have the same expectation
about the long-run player’s behavior given the same observation.
This allows us to restrict attention to the symmetric strategies of
the short-lived players.

On the long-run player’s side, we assume that the strategic
type does not discount the future payoffs. However, he does
take into account the possibility that no one will enter from
tomorrow on. Because µ is common knowledge and it satisfies S,
the strategic type will always believe that the game will continue
with probability δ regardless of how many short-lived players
have entered. Thus, it is well known that the strategic type’s
incentive will be exactly the same as that when he discounts
the future payoffs with discount factor δ but believes that the
relationship will last forever.

Therefore, the model we proposed here and the one studied
in Liu and Skrzypacz (2014) will have the same set of stationary
equilibria. Moreover, our Proposition 2 shows the choice of the
entry model is immaterial because all random entry models that
satisfy EPS and S with the same continuation probability will
lead to an identical posterior belief. Hence, our results provide
a solid mathematical foundation for the model studied in Liu and
Skrzypacz (2014).
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Appendix. Missing proofs

Proof of Lemma 1. Because a random entry model is math-
ematically equivalent to a random (partial) matching scheme
between the agents and calendar times, this lemma is essentially
a well-known impossibility result in random matching between
an infinite number of agents. See, for example, Section 3 in
Boylan (1992). We include its proof here for completeness.

Suppose by contradiction such a random entry model µ exists.
et I ≡ {i ∈ N | µ(τi < ∞) > 0} be the set of agents who enter
with positive probability. By assumption, I is infinite. Pick any
arbitrary i ∈ I . Pick any period t ∈ N such that µt

i > 0. Because
t
j = µt

i for all j ∈ I , we have 1 ≥ µ(∪j∈I (τj = t)) =
∑

j∈I µ
j
t =

j∈I µ
t
i = +∞, a contradiction. □

roof of Lemma 2. Sufficiency is straightforward from the pos-
erior belief formula (2). We only show necessity. Suppose µ
atisfies EPS and i, j ∈ I . Pick any ω ∈ Ω and s ∈ S. Pick a signal
process P ∈ P such that both∑

′ ̸=ω

πω′

∞∑
t=1

µt
i Pω′ (st = s) > 0 and

∑
ω′ ̸=ω

πω′

∞∑
t=1

µt
j Pω′ (st = s) > 0

old. Because i, j ∈ I , such P exists. Define

ij =

∑
ω′ ̸=ω πω′

∑
∞

t=1 µt
i Pω′ (st = s)∑

ω′ ̸=ω πω′

∑
∞

t=1 µt
j Pω′ (st = s)

> 0.

or each k ≥ 1, find a signal process Pk
∈ P such that (i) Pk

ω′ = Pω′

or all ω′
̸= ω, and (ii) Pk

ω(st = s) > 0 if and only if t = k. EPS
hen implies ν

Pk⊗µ

i (ω|s) = ν
Pk⊗µ

j (ω|s) for all k ≥ 1. Equivalently,
or each k ≥ 1, we have
∞

t=1

(µt
i − cijµt

j )P
k
ω(st = s) = 0.

y our construction of Pk, the above equation boils down to

µk
i − cijµk

j )P
k(sk = s) = 0,

mplying µk
i = cijµk

j . Since k ≥ 1 is arbitrary, this completes the
roof. □

roof of Corollary 1. Suppose µ satisfies EPS. Without loss
f generality, assume agent 1 enters with positive probability,
.e., µ(τ1 < ∞) > 0. By Lemma 2, for each agent i ∈ N, there
xists ci1 ≥ 0 such that µt

i = ci1µt
1 for all t ≥ 1.8 For each

≥ 1, because Θ∞ ⊂ ∪i(τi = t), we know
∑

i µ
t
i = µ(∪i(τi =

)) ≥ µ(Θ∞). This implies (
∑

i ci1)µ
t
1 ≥ µ(Θ∞) for all t ≥ 1, or

quivalently

t
1 ≥

µ(Θ∞)∑
i ci1

, ∀t ≥ 1.

Then we have

1 ≥ µ(τ1 < ∞) =

∑
t

µt
1 ≥

∑
t

µ(Θ∞)∑
i ci1

.

For this inequality to hold, we must have µ(Θ∞) = 0. □
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