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Abstract

This note extends Wiseman [6] to more general reputation games with exogenous learning. Using Goss-
ner’s [4] relative entropy method, we provide an explicit lower bound on all Nash equilibrium payoffs of 
the long-lived player. The lower bound shows that when the exogenous signals are sufficiently noisy and 
the long-lived player is patient, he can be assured of a payoff strictly higher than his minmax payoff.
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1. Introduction

Wiseman [6] studies an infinitely repeated chain store reputation game in which the short-
lived entrants receive noisy exogenous signals about the type of the long-lived incumbent. He 
shows that a sufficiently patient long-lived incumbent can effectively build a reputation and as-
sure himself of a payoff strictly higher than his minmax payoff provided the exogenous signals 
are noisy enough.
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This note extends Wiseman [6] to more general reputation models with exogenous learning. 
The analysis is built on Gossner [4] who introduces the relative entropy approach to the study 
of standard reputation models in Fudenberg and Levine [3] and obtains an explicit lower bound 
on all equilibrium payoffs. This paper shows Gossner’s [4] powerful tool can also be naturally 
adapted to reputation models with exogenous learning.1 We provide an explicit lower bound on 
all Nash equilibrium payoffs to the long-lived player which is a modification of that in Goss-
ner [4]. The lower bound is characterized by the commitment action, discount factor, prior belief 
and in particular how noisy the learning process is. In general this lower bound is lower than that 
in Gossner [4] because of learning and these two bounds coincide if the exogenous signals are 
completely uninformative.

The rest of the paper is organized as follows. In Section 2, we describe the reputation model 
with exogenous learning. Section 3 presents the main result. Section 4 applies the obtained lower 
bound to the example considered in Wiseman [6] and discusses the result. All the proofs are in 
Appendix A.

2. Model

2.1. Reputation game with exogenous learning

We consider the canonical reputation model (Mailath and Samuelson [5], Chapter 15) in which 
a fixed stage game is infinitely repeated. The stage game is a two-player simultaneous-move finite 
game of private monitoring. Denote by Ai the finite set of actions for player i in the stage game. 
Actions in the stage game are imperfectly observed. At the end of each period, player i only 
observes a private signal zi drawn from a finite set Zi . If an action profile a ∈ A1 × A2 ≡ A is 
chosen, the signal vector z ≡ (z1, z2) ∈ Z1 × Z2 ≡ Z is realized according to the distribution 
π( · |a) ∈ �(Z).2 The marginal distribution of player i’s private signals over Zi is denoted by 
πi( · |a). Both π( · |a) and πi( · |a) have obvious extensions π( · |α) and πi( · |α) respectively to 
mixed action profiles. Player i’s ex-post stage game payoff from his action ai and private signal 
zi is given by u∗

i (ai, zi). Player i’s ex ante stage game payoff from action profile (ai, a−i ) ∈ A

is ui(ai, a−i ) = ∑
zi

πi(zi |ai, a−i )u
∗
i (ai, zi). Player 1 is a long-lived player with discount factor 

δ ∈ (0, 1) while player 2 is a sequence of short-lived players each of whom only lives for one 
period. In any period t , the long-lived player 1 observes both his own previous actions and private 
signals, but the current generation of the short-lived player 2 only observes previous private 
signals of his predecessors.

There is uncertainty about the type of player 1. Let Ξ ≡ {ξ0} ∪ Ξ̂ be the set of all possible 
types of player 1. ξ0 is the normal type of player 1. His payoff in the repeated game is the 
average discounted sum of stage game payoffs (1 − δ) 

∑
t≥0 δtu1(a

t ). Each ξ(α̂1) ∈ Ξ̂ denotes 
a simple commitment type who plays the stage game (mixed) action α̂1 ∈ �(A1) in every period 
independent of histories. Assume Ξ̂ is either finite or countable. The type of player 1 is unknown 
to player 2. Let μ ∈ �(Ξ) be player 2’s prior belief about player 1’s type, with full support.

At period t = −1, nature selects a type ξ ∈ Ξ of player 1 according to the initial distribu-
tion μ. Player 2 does not observe the type of player 1. However, we assume that the uninformed 
player 2 has access to an exogenous channel which gradually reveals the true type of player 1. 

1 Ekmekci et al. [2] also applies the relative entropy approach to the reputation game in which the type of the long-lived 
player is governed by an underlying stochastic process.

2 For a finite set X, �(X) denotes the set of all probability distributions over X.



66 J. Hu / Journal of Economic Theory 153 (2014) 64–73
More specifically, conditional on the type ξ , a stochastic process {ηt(ξ)}t≥0 generates a signal 
yt ∈ Y after every period’s play, where Y is a finite set of all possible signals. To distinguish the 
signals z ∈ Z generated from each period’s play and the signals y ∈ Y generated by {ηt (ξ)}t≥0, 
we call the former endogenous signals and the latter exogenous signals. In addition to observing 
previous endogenous signals, each generation of player 2 also observes all the exogenous signals 
from earlier periods. We assume that for each type ξ ∈ Ξ , the stochastic process {ηt (ξ)}t≥0 is 
independent and identically distributed across t . Conditional on ξ , the distribution of the exoge-
nous signals in every period is denoted by ρ( · |ξ) ∈ �(Y).

For expositional convenience, we assume player 1 does not observe the exogenous signals. 
This assumption is not crucial for our result. The same lower bound will apply if we assume 
player 1 also observes the exogenous signals. A private history of player 1 in period t consists of 
his previous actions and endogenous signals, denoted by ht

1 ≡ (a0
1, z0

1, a
1
1, z1

1, . . . , a
t−1
1 , zt−1

1 ) ∈
H1t ≡ (A1 × Z1)

t , with the usual notation H10 = {∅}. A behavior strategy for player 1 is a map

σ1 : Ξ ×
∞⋃
t=0

H1t → �(A1),

with the restriction that for all ξ(α̂1) ∈ Ξ̂ ,

σ1
(
ξ(α̂1), h

t
1

) = α̂1 for all ht
1 ∈

∞⋃
t=0

H1t .

A private history of player 2 in period t contains both previous endogenous and exogenous 
signals, denoted by ht

2 ≡ (z0
2, y

0, z1
2, y

1, . . . , zt−1
2 , yt−1) ∈ H2t ≡ (Z2 × Y)t , with H20 = {∅}. 

A behavior strategy for player 2 is a map

σ2 :
∞⋃
t=0

H2t → �(A2).

A strategy profile (σ ∗
1 , σ ∗

2 ) is a Nash equilibrium of this reputation game if it is a pair of 
mutual best responses: i) given σ ∗

2 , the normal type of player 1 maximizes his expected lifetime 
utility, ii) given σ ∗

1 , player 2 updates his belief via Bayes’ rule along the path of play and plays a 
myopic best response.

2.2. Relative entropy

The relative entropy between two probability distributions P and Q over a finite set X is the 
expected log likelihood ratio

d(P‖Q) ≡ EP log
P(x)

Q(x)
=

∑
x∈X

P (x) log
P(x)

Q(x)
,

with the usual convention that 0 log 0
q

= 0 if q ≥ 0 and p log p
0 = ∞ if p > 0. Relative entropy 

is always nonnegative and it is zero if and only if the two distributions are identical.3

Following Gossner [4], relative entropy can be used to measure the error in player 2’s one step 
ahead prediction of the endogenous signals.

3 See Cover and Thomas [1], Gossner [4] and Ekmekci et al. [2] for more details on relative entropy.
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Definition 1. The mixed action α2 ∈ �(A2) is an ε-entropy-confirming best response to α1 ∈
�(A1) if there exists α′

1 ∈ �(A1) such that

(a) α2 is a best response to α′
1,

(b) d(π2( · |α1, α2)‖π2( · |α′
1, α2)) ≤ ε.

The set of all ε-entropy confirming best responses to α1 is denoted by Bε(α1).4

For any commitment type ξ(α̂1) ∈ Ξ̂ , let

V ξ(α̂1)
(ε) ≡ inf

α2∈Bε(α̂1)
u1(α̂1, α2)

be the lowest possible payoff to player 1 if he plays α̂1 while player 2 plays an ε-entropy-
confirming best response to α̂1. Let Vξ(α̂1)( · ) be the pointwise supremum of all convex functions 
below V ξ(α̂1)

. Clearly Vξ(α̂1) is convex and nonincreasing.
In addition to one step ahead prediction error, relative entropy will also measure the speed of 

learning from exogenous signals. For each commitment type ξ(α̂1) ∈ Ξ̂ , let λξ(α̂1) be the relative 
entropy of the exogenous signal distributions when player 1 is the normal type and when he is 
the commitment type ξ(α̂1), i.e.

λξ(α̂1) ≡ d
(
ρ( · |ξ0)‖ρ

( · |ξ(α̂1)
))

.

This value λξ(α̂1) measures how different the two distributions ρ( · |ξ0) and ρ( · |ξ(α̂1)) are. In 
terms of learning, λξ(α̂1) measures how fast player 2 can learn from exogenous signals that 
player 1 is not the commitment type ξ(α̂1) when player 1 is indeed the normal type. The larger 
λξ(α̂1) is, the faster the learning process is.

The following assumption rules out extremely fast learning.5

Assumption 1. λξ(α̂1) < ∞ for all ξ(α̂1) ∈ Ξ̂ .

3. Main result

For any δ ∈ (0, 1), let U1(δ) denote the infimum of all Nash equilibrium payoffs to the normal 
type of player 1 if the discount factor is δ. Our main result is the following:

Proposition 1. Under Assumption 1, for all δ ∈ (0, 1),

U1(δ) ≥ sup
ξ(α̂1)∈Ξ̂

Vξ(α̂1)

(−(1 − δ) logμ
(
ξ(α̂1)

) + λξ(α̂1)

)
.

To understand this lower bound, consider a commitment type ξ(α̂1) ∈ Ξ̂ . Proposition 1 states 
that in any Nash equilibrium, the normal type of player 1 is assured of a payoff no less than 
Vξ(α̂1)(−(1 −δ) logμ(ξ(α̂1)) +λξ(α̂1)). Recall that Vξ(α̂1) is a nonincreasing function. For fixed δ, 

4 For more detailed discussion of ε-entropy-confirming best response, see Gossner [4].
5 Technically, it requires that the support of ρ( · |ξ) be contained in the support of ρ( · |ξ(α̂1)) for every commitment 

type ξ(α̂1).
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E S

F −1, −1 a, 0
A 0, b a, 0

Fig. 1. Chain store stage game.

this lower bound increases with μ(ξ(α̂1)) while decreases with λξ(α̂1). The intuition is straight-
forward. A larger prior probability on the commitment type ξ(α̂1) makes it easier for the normal 
type of player 1 to build a reputation on this commitment type. However the learning process 
goes against reputation building because player 2 eventually learns that player 1 is not the com-
mitment type ξ(α̂1). It is then intuitive that the speed of learning matters. If the exogenous signals 
are sufficiently noisy, then λξ(α̂1) is small and it is hard for player 2 to distinguish the normal type 
and the commitment type. This results in a rather slow learning process and hence a high lower 
bound. If the learning process is completely uninformative, λξ(α̂1) = 0, then the lower bound is 
given by Vξ(α̂1)(−(1 − δ) logμ(ξ(α̂1))) which is exactly the same lower bound derived in Goss-
ner [4] without exogenous learning. In general, when λξ(α̂1) > 0, the lower bound is lower than 
that in Gossner [4] due to the learning effect. If player 1 becomes arbitrarily patient, δ → 1, 
the lower bound becomes Vξ(α̂1)(λξ(α̂1)).

6 The effect of prior probability vanishes while that of 
learning remains unchanged. Moreover, in the presence of multiple commitment types, which 
commitment type is the most favorable now depends on both stage game payoffs and the speed 
of learning. Even if player 2 assigns positive probability on the Stackelberg type, committing to 
the Stackelberg action may not help player 1 effectively build a reputation because the exogenous 
signals may reveal quickly to player 2 that player 1 is not the Stackelberg commitment type. This 
is in a sharp contrast with the result in standard models without exogenous learning.

4. An example

We use the following example which is first considered in Wiseman [6] to illustrate the lower 
bound obtained in Proposition 1.

There is a long-lived incumbent, player 1, facing a sequence of short-lived entrants, player 2. 
In every period, the entrant chooses between entering (E) and staying out (S) while the incum-
bent decides whether to fight (F ) or accommodate (A). The stage game payoff is given in Fig. 1, 
where a > 1 and b > 0.

The stage game is infinitely repeated with perfect monitoring. There are two types of player 1, 
the normal type, denoted by ξ0, and a simple commitment type, denoted by ξ(F ) who plays the 
stage game Stackelberg action F in every period independent of histories. The prior probability 
of ξ(F ) is μ(ξ(F )). The exogenous signals observed by player 2 only take two values: y and y. 
Assume ρ(y|ξ0) = β , ρ(y|ξ(F )) = α and β > α. Thus

λξ(F ) = β log
β

α
+ (1 − β) log

1 − β

1 − α
.

If player 2 expects player 1 to fight with probability α(F ) > b
b+1 , so that his prediction of player 

1’s play is off by log 1
α(F )

< log b+1
b

, then his unique best response is to stay out, i.e. Bε(F ) = {S}
when ε < log b+1

b
. So we have

6 Since Vξ(α̂ )(ε) is convex, it is continuous at every ε > 0.

1
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V ξ(F )(ε) =
{

a if ε < log b+1
b

,

−1 if ε ≥ log b+1
b

,

and thus

Vξ(F )(ε) =
{

a − a+1
log b+1

b

ε, if ε < log b+1
b

,

−1 if ε ≥ log b+1
b

.

Proposition 1 then implies for all δ ∈ (0, 1)

U1(δ) ≥ a − a + 1

log b+1
b

(−(1 − δ) logμ
(
ξ(F )

) + λξ(F )

)
,

and in the limit

lim inf
δ→1

U1(δ) ≥ a − (a + 1)
λξ(F )

log b+1
b

. (1)

Wiseman [6] considers symmetrically distributed signals, i.e., β = 1 − α > 1/2, and derives 

a lower bound of a − (a + 1)
log β

1−β

log b+1
b

. Because in this symmetric case λξ(F ) = (2β − 1) log β
1−β

, 

this bound is lower than that in (1). As signals become less informative, i.e. β → 1
2 , both lower 

bounds become arbitrarily close to player 1’s Stackelberg payoff.
As we have mentioned, the term λξ (F ) in (1) measures the speed of exogenous learning. In 

particular, it measures how frequently the exogenous signals reveal to player 2 that player 1 is 
not a commitment type, which in turn determines how frequently player 2 enters. This point is 
more transparent by considering the following direct arguments.

Fix any Nash equilibrium σ . For any history h∞ in which F is always played, let {μt }t≥0 be 
player 2’s posterior belief on the commitment type along this history. Player 2 is willing to enter 
in period t only if

Prob(F ) ≡ μt + (1 − μt)σ1
(
ξ0, h

t
)
(F ) ≤ b

b + 1
.

So, if player 2 enters in period t , we must have

μt ≤ b

b + 1
(2)

and

σ1
(
ξ0, h

t
)
(F ) ≤ b

b + 1
. (3)

We examine the odds ratio {μt/(1 −μt)}t≥0 along this history. Since the entrant is always fought 
along this history, the odds ratio evolves as

μt+1

1 − μt+1
=

(
α

β

)1y(yt )(1 − α

1 − β

)1y(yt )
μt

(1 − μt)σ1(ξ0, ht )(F )
∀t ≥ 0,

where 1y is the indicator function for y ∈ {y, y}, i.e. 1y(y
t ) = 1 if yt = y and 0 otherwise. 

Because σ1(ξ, ht )(F ) is always less than or equal to 1, we have

μt+1 ≥
(

α
)1y(yt )(1 − α

)1y(yt )
μt (4)
1 − μt+1 β 1 − β 1 − μt
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if player 2 stays out in period t . Because inequality (3) holds if player 2 enters in period t , we 
have

μt+1

1 − μt+1
≥

(
α

β

)1y(yt )(1 − α

1 − β

)1y(yt )
b + 1

b

μt

1 − μt

(5)

if he enters in period t . For any t ≥ 1, let nE(t), ny(t) be the number of entries and the number 
of signal y’s respectively in history ht . Inequalities (4), (5) and simple induction imply

μt

1 − μt

≥
(

b + 1

b

)nE(t)(
α

β

)ny(t)(1 − α

1 − β

)t−ny(t)
μ(ξ(F ))

1 − μ(ξ(F ))
∀t ≥ 1. (6)

Moreover, if player 2 enters in period t , inequality (2) implies

b ≥ μt

1 − μt

. (7)

Hence inequalities (6) and (7) together yield

b ≥
(

b + 1

b

)nE(t)(
α

β

)ny(t)(1 − α

1 − β

)t−ny(t)
μ(ξ(F ))

1 − μ(ξ(F ))
(8)

for all t at which player 2 enters. Let {tk}k≥0 be the sequence of periods in which entry occurs. 
By taking log and dividing both sides by tk, inequality (8) implies

lim sup
k→∞

nE(tk)

tk
≤ 1

log b+1
b

lim
k→∞

[
ny(tk)

tk
log

β

α
+

(
1 − ny(tk)

tk

)
log

1 − β

1 − α

]
= λξ(F )

log b+1
b

,

because 1
tk

log(b
1−μ(ξ(F ))
μ(ξ(F ))

) → 0 as tk → ∞ and conditional on the normal type ny(tk)/tk → β

by law of large numbers. Because for every t ≥ 1, there exists k ≥ 0 such that tk ≤ t < tk+1 and 
nE(t)/t = nE(tk)/t ≤ nE(tk)/tk , the above inequality also holds for the whole sequence

lim sup
t→∞

nE(t)

t
≤ λξ(F )

log b+1
b

.

Lastly, because this inequality holds for all Nash equilibria, we have

lim inf
δ→1

U1(δ) ≥
(

1 − λξ(F )

log b+1
b

)
a + λξ(F )

log b+1
b

(−1) = a − (a + 1)
λξ(F )

log b+1
b

.

This is exactly the lower bound in (1).

Appendix A

The whole proof follows the same line of arguments as in Gossner [4], modified to incorpo-
rate exogenous learning. The main idea is to estimate the payoff that player 1 would get in any 
equilibrium if he deviated to a commitment strategy, say α̂1. In every period, player 2 plays a 
myopic best response to what he expects player 1 to play, but the actual play is always α̂1 if the 
normal type deviated. If we measure this “prediction error” dt by the relative entropy between 
the probability distribution over player 2’s histories generated by normal type’s deviation and 
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that generated by the equilibrium play, then player 2 is actually always playing an dt -entropy-
confirming best response to α̂1, yielding a payoff to player 1 at least as high as V ξ(α̂1)

(dt ) in 
every period. The definition and convexity of Vξ(α̂1) will then imply that ex ante player 1 can 
ensure himself a payoff at least as high as Vξ(α̂1)((1 − δ) 

∑
δtdt ) by deviation, and so this value 

is an lower bound for player 1’s equilibrium payoff. In Gossner [4], the distribution over histories 
generated by normal type’s deviation is exactly the same as that generated by the commitment 
type’s play. However, in the current setting, these two distributions are in general different be-
cause the exogenous signals generated by the normal type and the commitment type are different. 
Nonetheless, we show here Gossner’s [4] proof can also be applied to the current setting with 
some modifications.

Formally, fix σ = (σ1, σ2) a Nash equilibrium and a commitment type ξ(α̂1) ∈ Ξ̂ . Let P σ be 
the probability measure over Ξ × (A1 ×A2 ×Z1 ×Z2 ×Y)∞ induced by σ , μ and {ρ( · |ξ)}ξ∈Ξ , 
as in Section 2. Let P̂ σ be the conditional probability of P σ given the event that player 1 is the 
commitment type ξ(α̂1). The measure P̂ σ determines how the play evolves if player 1 is the 
commitment type ξ(α̂1).

Let σ ′
1 be the strategy for player 1 in which the normal type of player 1 mimics the behavior 

of the commitment type ξ(α̂1), i.e. σ ′
1(ξ0, ht

1) = α̂1 for all ht
1 ∈ ⋃

t≥0 H1t . Let σ ′ = (σ ′
1, σ2). 

The probability measure P̃ σ ′ ≡ P σ ′
( · |{ξ0} × (A1 × A2 × Z1 × Z2 × Y)∞)) describes how the 

normal type of player 1 expects the play to evolve if he deviates to the commitment strategy 
of ξ(α̂1). As we have mentioned above, P̃ σ ′

and P̂ σ differ in the distributions of player 2’s 
exogenous signals. Because player 2’s exogenous signals only depend on the type of player 1, 
for all ht ∈ (A1 × A2 × Z1 × Z2 × Y)t we have

P̃ σ ′(
ht

) = P̂ σ
(
ht

) t−1∏
τ=0

ρ(yτ |ξ0)

ρ(yτ |ξ(α̂1))
,

where y0, y1, · · · , yt−1 are the exogenous signals contained in the history ht . Notice by Assump-
tion 1, ρ(y|ξ(α̂1)) > 0 whenever ρ(y|ξ0) > 0. Hence the right hand side of the above equality is 
well defined.

Let P σ
2 , P̃ σ ′

2 and P̂ σ
2 be the marginal distributions of P σ , P̃ σ ′

and P̂ σ respectively on player 
2’s histories (Z2 × Y)∞, and let {P σ

2t }t≥1, {P̃ σ ′
2t }t≥1 and {P̂ σ

2t }t≥1 be the corresponding finite 
dimensional distributions. The following lemma gives an upper bound on the prediction errors in 
player 2’s first t periods signals if he expects the game to evolve as P σ

2t while the normal type of 
player 1 deviates to α̂1.

Lemma 1. For all t ≥ 1,

d
(
P̃ σ ′

2t ‖P σ
2t

) ≤ − logμ
(
ξ(α̂1)

) + tλξ(α̂1).

Proof. We show this by a simple calculation:

d
(
P̃ σ ′

2t ‖P σ
2t

) ≡
∑

ht
2∈H2t

P̃ σ ′
2t

(
ht

2

)
log

P̃ σ ′
2t (ht

2)

P σ
2t (h

t
2)

=
∑

ht ∈H

P̃ σ ′
2t

(
ht

2

)
log

[
P̂ σ

2t (h
t
2)

P σ
2t (h

t
2)

t−1∏
τ=0

ρ(yτ |ξ0)

ρ(yτ |ξ(α̂1))

]

2 2t
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=
∑

ht
2∈H2t

P̃ σ ′
2t

(
ht

2

)
log

P̂ σ
2t (h

t
2)

P σ
2t (h

t
2)

+
∑

ht
2∈H2t

P̃ σ ′
2t

(
ht

2

)
log

(
t−1∏
τ=0

ρ(yτ |ξ0)

ρ(yτ |ξ(α̂1))

)
.

Notice the second term is the relative entropy of the distributions on player 2’s exogenous signals 
in the first t periods when player 1 is the normal type and when he is the commitment type ξ(α̂1). 
Because the exogenous signals are conditionally independent across time, the second term is 
simply tλξ(α̂1). Moreover, since P̂ σ

2t is obtained by conditioning P σ
2t on the event that player 1 is 

the commitment type ξ(α̂1), we have

P̂ σ
2t (h

t
2)

P σ
2t (h

t
2)

≤ 1

μ(ξ(α̂1))
∀ht

2 ∈ H2t .

Therefore the first term is no greater than − logμ(ξ(α̂1)). These two observations imply the 
desired result. �

For any private history ht
2 ∈ ⋃

t≥0 H2t , P σ
2,t+1 (resp., P̃ σ ′

2,t+1) induces player 2’s one step ahead 

prediction on his endogenous signals zt
2 ∈ Z2, denoted by pσ

2t ( · |ht
2) (resp., p̃σ ′

2t ( · |ht
2)).

7 In the 
equilibrium, at the information set ht

2, player 2 believes that his endogenous signals will realize 
according to pσ

2t ( · |ht
2). But if player 2 had known that player 1 was the normal type and played 

like the commitment type ξ(α̂1), then player 2 would predict his endogenous signals according 
to p̃σ ′

2t ( · |ht
2).

For any t ≥ 1, let Ẽσ ′
2t [ · ] denote the expectation over H2t with respect to the probability 

measure P̃ σ ′
2t . The following lemma bounds player 2’s expected one step ahead prediction error.

Lemma 2. For all t ≥ 0,

Ẽσ ′
2t

[
d
(
p̃σ ′

2t

( · |ht
2

)‖pσ
2t

( · |ht
2

))] ≤ d
(
P̃ σ ′

2,t+1‖P σ
2,t+1

) − d
(
P̃ σ ′

2t ‖P σ
2t

)
,

where d(P̃ σ ′
2,0‖P σ

2,0) ≡ 0.

Proof. Let q2,t+1( · |ht
2, z

t
2) (resp., q̃2,t+1( · |ht

2, z
t
2)) be the one step ahead prediction on his 

exogenous signals if he had observed his past private history ht
2 and current period endoge-

nous signal zt
2, induced by P σ

2,t+1 (resp., P̃ σ ′
2,t+1). Because Assumption 1 and Lemma 1 imply

d(P̃ σ ′
2t ‖P σ

2t ) < ∞ for all t ≥ 1, applying the chain rule of relative entropy twice yields8

d
(
P̃ σ ′

2,t+1‖P σ
2,t+1

) − d
(
P̃ σ ′

2t ‖P σ
2t

)
= Ẽσ ′

2t

[
d
(
p̃σ ′

2t

( · |ht
2

)‖pσ
2t

( · |ht
2

))] + E
†
2,t+1

[
d
(
q̃2,t+1

( · |ht
2, z

t
2

)‖q2,t+1
( · |ht

2, z
t
2

))]
,

where E†
2,t+1 is with respect to the marginal distribution of P̃ σ ′

2,t+1 over (Z2 × Y)t × Z2. The 
desired result is then obtained by noting that the last term in the above expression is nonnegative 
because relative entropy is always nonnegative. �

7 If ht
2 has probability 0 under Pσ , i.e. it is not reached in the equilibrium σ , then the one step ahead prediction is not 

well defined. But this does not matter because we will consider the average (over ht
2) one step prediction errors.

8 For a formal statement of the chain rule, see Cover and Thomas [1] Section 2.5 and also Gossner [4].
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Let dδ,σ

ξ(α̂1)
be the expected average discounted sum of player 2’s one step ahead prediction 

errors if player 1 is the normal type and he deviates to mimicking the commitment type ξ(α̂1)

d
δ,σ

ξ(α̂1)
≡ Ẽσ ′

[
(1 − δ)

∞∑
t=0

δtd
(
p̃σ ′

2t

( · |ht
2

)‖pσ
2t

( · |ht
2

))]

= (1 − δ)

∞∑
t=0

δt Ẽσ ′
2t

[
d
(
p̃σ ′

2t

( · |ht
2

)‖pσ
2t

( · |ht
2

))]
.

Combining Lemmas 1 and 2, a similar calculation as in Lemma 5 of Gossner [4] will imply

d
δ,σ

ξ(α̂1)
≤ −(1 − δ)μ

(
ξ(α̂1)

) + λξ(α̂1).

An important feature of this inequality is that the upper bound on the expected prediction 
error is independent of P σ and P̃ σ ′

, which allows us to bound player 1’s payoff in any Nash 
equilibrium.

The final step is to show player 1 can guarantee himself a payoff at least as high as

Vξ(α̂1)

(−(1 − δ) logμ
(
ξ(α̂1)

) + λξ(α̂1)

)
by mimicking commitment type α̂1. This directly follows from Lemma 6 in Gossner [4].
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