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This online appendix contains the missing proofs of the article. Appendix A pro-

vides the proof of Corollary 1. Appendices B to E contain the proofs of Propositions

2 to 4. Appendix F shows that it is without loss of generality to focus on consumers’

pure strategy. Appendix G proves Proposition 6.

Appendix A Proof of Corollary 1

To prove Corollary 1, we need the following two claims, which are also needed in later

proofs.

Claim A.1. If x > b, h(x; a, b, v) is strictly increasing in v.

Proof. The easiest way to see this is to note hxv(x; a, b, v) = ρ(x−b)
(x−v)2

> 0. If v′ > v, we

have h(x; a, b, v′) = s+
∫ x
b
hx(x̃; a, b, v′)dx̃ > s+

∫ x
b
hx(x̃; a, b, v)dx̃ = h(x; a, b, v).

Claim A.2. If ca,b,v ∈ U , then ca,b′,a ∈ U for all b′ ∈ [µ−s, b]. Moreover, c0,µ−s,0 ∈ U .

Proof. Note that ca,b,v and ca,b,a differ from each other only over (b, 1]. Because v ≥ a,

ca,b,a ≤ ca,b,v over (b, 1] by Claim A.1, implying ca,b,a ∈ U . Consider b′ ∈ [µ − s, b).

For x ∈ [a, b′], ca,b′,a(x) = µ − a − µ−s−a
b′−a (x − a) < µ − a − µ−s−a

b−a (x − a) = ca,b,a(x).

For x ∈ (b′, b), ca,b′,a(x) < s < ca,b,a(x). For x ∈ [b, 1], h(x; a, b′, a) = s − (µ −

s − a) log x−a
b′−a < s − (µ − s − a) log x−a

b−a = h(x; a, b, a), implying ca,b′,a(x) ≤ ca,b,a(x).

Therefore, ca,b′,a ≤ ca,b,a, implying ca,b′,a ∈ U . Finally, because ca,µ−s,a = c0,µ−s,a, we

know c0,µ−s,0 ∈ U by Claim A.1 again.
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Proof of Corollary 1. By Claim A.2, the search market (F, s) admits active search if

and only if c0,µ−s,0 is feasible, which is equivalent to

s− (µ− s) log
x

µ− s
≤ cF (x), ∀x ∈ [µ− s, 1]. (A.1)

Because F 6= F0, F places positive mass over [0, µ). Thus, we know cF (µ) > 0.

This implies −µ log x
µ
< cF (x) over [µ, 1]. By uniform continuity, we know (A.1)

must be satisfied for positive but small s. Thus, there does exist search cost s > 0

such that (F, s) admits active search. Let s∗ > 0 be the least upper bound of such

s’s. Because lims↑µ s − (µ − s) log µ
µ−s = µ > cF (µ), we know s∗ < µ. For any

s < s∗, there exists s < s′ < s∗ such that (F, s′) admits active search. Because

s− (µ− s) log x
µ−s < s′− (µ− s′) log x

µ−s′ ≤ cF (x) for all x ∈ [µ− s, 1], we know (F, s)

admits active search too. Finally, for any x > µ − s∗, we have x ≥ µ − s when s is

sufficiently close to s∗. Hence, s∗−(µ−s∗) log x
µ−s∗ = lims↑s∗ s−(µ−s) log x

µ−s ≤ cF (x).

This implies (F, s∗) admits active search too. Therefore, (F, s) admits active search

if and only if s ∈ (0, s∗], completing the proof.

Before we move to the next section, we establish a strict single-crossing property

of two h curves under different parameters. This is particularly useful in reducing

the infinitely many feasibility constraints into a single one. We need it in the proofs

of Propositions 3 and 4.

Claim A.3. Consider two sets of parameters (a, b, v) and (a′, b′, v′). Suppose b′ < b

and v′ ≥ v. Over [b, 1], h(x; a′, b′, v′) crosses h(x; a, b, v) at most once and from below.

That is, one and only one of the following holds:

(i) h(x; a′, b′, v′) < h(x; a, b, v) for all x ∈ [b, 1].

(ii) there exists x̂ ∈ (b, 1] such that h(x; a′, b′, v′) < (>)h(x; a, b, v) if x < x̂ (x > x̂).
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Consequently, for any x′ ∈ [b, 1], h(x; a′, b′, v′) ≤ h(x; a, b, v) for all x ∈ [b, x′] if and

only if h(x′; a′, b′, v′) ≤ h(x′; a, b, v).

Proof. If h(x; a′, b′, v′) and h(x; a, b, v) do not intersect over the interval [b, 1], then (i)

holds, as h(b; a, b′, v′) < s = h(b; a, b, v).

Suppose they intersect at some x̂ ∈ (b, 1]. For clarity, let π = µ−s−a
b−a (b − v)

and π′ = µ−s−a′
b′−a′ (b′ − v′). Because h(b; a′, b′, v′) < h(b; a, b, v) and h(x̂; a′, b′, v′) =

h(x̂; a, b, v), there exists x̃ ∈ (b, x̂) such that hx(x̃; a′, b′, v′) > hx(x̃; a, b, v), or equiva-

lently, − π′

x̃−v′ > −
π
x̃−v . Because v′ ≥ v, it is straightforward to verify − π′

x−v′ > −
π
x−v

for all x > x̃, or equivalently hx(x; a′, b′, v′) > hx(x; a, b, v) for all x > x̃. This imme-

diately implies h(x; a′, b′, v′) > h(x; a, b, v) for all x > x̂. If there exists x ∈ (b, x̂) such

that h(x; a′, b′, v′) > h(x; a, b, v), then there exists ˆ̂x ∈ (b, x) at which the two curves

intersect. Applying the same argument, we can obtain h(x̂; a′, b′, v′) > h(x̂; a, b, v), a

contradiction. Therefore, h(x; a′, b′, v′) < h(x; a, b, v) for x < x̂.

Appendix B Proof of Proposition 2

B.1 Existence

Existence is a direct implication of the following claim.

Claim B.1. Let

K ≡ {(a, b, v) ∈ R3 | a ∈ [0, µ− s), b ∈ [µ− s, b̄], v ∈ [a, b), and ca,b,v ≤ cF} (B.1)

be the set of feasible parameters (a, b, v). Then, K is compact.

Proof. AsK is clearly bounded, we only need to show it is closed. Assume (an, bn, vn)n≥1

is a convergent sequence in K and let (a, b, v) be its limit. We proceed to show

(a, b, v) ∈ K.
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First, we show v ∈ [a, b). Note that, for all n ≥ 1, h(1; an, bn, vn) = s− µ−s−an
bn−an (bn−

vn) log 1−vn
bn−vn ≥ s − (bn − vn) log 1−vn

bn−vn . If v = b, we have h(1; an, bn, vn) > 0 for

sufficiently large n. This contradicts can,bn,vn(1) = max{h(1; an, bn, vn), 0} ≤ cF (1) =

0. Therefore, we must have v < b.

Second, we show a ∈ [0, µ− s). Suppose a = µ− s by contradiction. If b > µ− s,

we have limn→∞ h(1; an, bn, vn) = limn→∞ s− µ−s−an
bn−an (bn− vn) log 1−vn

bn−vn = s > 0. This,

again, contradicts can,bn,vn(1) ≤ cF (1). Thus, we must have b = µ − s. But because

an ≤ vn < bn for all n, we have v = limn vn = µ − s = b, which contradicts the

previous step. Therefore, we must have a < µ− s.

Finally, we show ca,b,v ≤ cF . The previous two steps guarantee that ca,b,v is

well-defined. By construction, this is true for x ∈ [0, a] ∪ {b}. If x ∈ (a, b), we

know x ∈ (an, bn) for sufficiently large n. Thus, ca,b,v(x) = s − µ−s−a
b−a (x − b) =

limn→∞ s − µ−s−an
bn−an (x − bn) = limn→∞ can,bn,vn(x) ≤ cF (x). Similarly, if x ∈ (b, 1],

we know x ∈ (bn, 1] for sufficiently large n. Thus, ca,b,v(x) = max{h(x; a, b, v), 0} =

limn→∞max{h(x; an, bn, vn), 0} = limn→∞ can,bn,vn(x) ≤ cF (x). This completes the

proof.

B.2 Uniqueness

Claim A.2 has shown that the set of achievable total welfare levels takes the form of

either [µ− s, b̂) or [µ− s, b̂] for some µ− s ≤ b̂ ≤ b̄. Claim B.1 implies that it must

be [µ− s, b̂]. For every b ∈ [µ− s, b̂], define

v(b) ≡ max
a∈[0, µ−s]

max
v∈[a,b)

v subject to ca,b,v ≤ cF . (B.2)

By Claim B.1 again, we know v(b) is well defined. Note that the optimal consumer

surplus is simply maxb∈[µ−s, b̂] v(b). We show the desired uniqueness by showing that

(i) (B.2) has a unique solution for every b ∈ [µ − s, b̂] (Claim B.2), and (ii) v(b) is
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strictly concave (Claim B.3).

For every b ∈ [µ− s, b̂], let a(b) be the smallest a ∈ [0, µ− s) such that

s− µ− s− a
b− a

(x− b) ≤ cF (x), ∀x ∈ [a, b]. (B.3)

Figure B.1 provides an illustration of the determination of a(b). When a = a(b), some

of the constraints in (B.3) must be binding. In fact, a(b) is the minimal feasible low

match value atom for b. This is because any ca,b,v with a < a(b) must be infeasible.

x
1

µ

s

b′ba(b′)a(b)

cF

Figure B.1: Minimal feasible low match value atom

Claim B.2. If ca,b,v ∈ U and a > a(b), then there exists v′ > v such that ca(b),b,v′ ∈ U .

Therefore, (B.2) has a unique solution and the optimal choice of a is a(b).

Proof. Because µ−s−a(b)
b−a(b)

> µ−s−a
b−a , it is straightforward to verify h(x; a(b), b, v) ≤

h(x; a, b, v) for x ∈ [b, 1], with equality if and only if x = b. Note hx(b; a(b), b, v) =

−µ−s−a(b)
b−a(b)

< −µ−s−a
b−a = hx(b; a, b, v). By uniform continuity of hx, there exists

x̂ > b and v1 > v such that hx(x; a(b), b, v′) ≤ hx(x; a, b, v) for all x ∈ [b, x̂] and

v′ ∈ [v, v1]. Therefore, for any v′ ∈ [v, v1], h(x; a(b), b, v′) = s+
∫ x
b
hx(x̃, a(b), b, v′)dx̃ ≤

s+
∫ x
b
hx(x̃, a, b, v)dx̃ = h(x; a, b, v) for all x ∈ [b, x̂].

On the other hand, because h(x; a(b), b, v) < h(x; a, b, v) for all x ∈ [x̂, 1], uni-

form continuity of h implies that there exists v2 > v such that for all v′ ∈ [v, v2],

h(x; a(b), b, v′) ≤ h(x; a, b, v) for all x ∈ [x̂, 1]. Pick any v′ ∈ (v,min{v1, v2}), we then
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know h(x; a(b), b, v′) ≤ h(x; a, b, v) ≤ cF (x) for all x ∈ [b, 1]. By construction of a(b),

ca(b),b,v′ ≤ cF (x) for all x ∈ [0, b]. Therefore, ca(b),b,v′ is feasible.

For b ∈ [µ − s, b̂], let ρ(b) ≡ µ−s−a(b)
b−a(b)

be the maximal feasible probability of trade

for b. From Figure B.1, it is easy to note that ρ(b) is strictly decreasing, as the blue

line is steeper than the red line.1

Claim B.3. v(b) is strictly concave.

Proof. Pick b1, b2 ∈ [µ− s, b̂] and assume b1 < b2. Let a1 = a(b1) and a2 = a(b2). As

a(b) is increasing, we know a1 ≤ a2. Let v1 = v(b1) and v2 = v(b2). By Claim B.2,

both ca1,b1,v1 and ca2,b2,v2 are feasible. These two curves have a unique intersection,

denoted by (x∗, y∗), over the interval [a2, b1]. Figure B.2 illustrates this intersection

for the case b1 > µ− s. Panels (a) and (b) depict two different sub-cases, a1 < a2 and

a1 = a2, respectively. In both panels, the two blue lines represent ca1,b1,v1 and ca2,b2,v2

over the relevant ranges. If b1 = µ − s, then a1 = 0 and it is possible that a2 > 0.

However, because c0,µ−s,v1 = ca2,µ−s,v1 , it is treated as the case a1 = a2. Note that the

probability of trade ρ(bi) = µ−s−ai
bi−ai under cai,bi,vi can be expressed in terms of (x∗, y∗):

ρ(bi) = y∗−s
bi−x∗ , for i = 1, 2.

Pick any λ ∈ (0, 1) and let bλ = λb1 + (1 − λ)b2. Let aλ be the unique solution

to s− y∗−s
bλ−x∗ (x− b

λ) = µ− x. In fact, aλ is just the intersection of two straight lines:

(i) the line that passes through (x∗, y∗) and (bλ, s), and (ii) the downward-sloping

45-degree line. The red lines in both panels of Figure B.2 illustrate the former. For

example, if a1 = a2, then aλ just coincides with them. See panel (b). If a1 < a2, then

aλ ∈ (a1, a2) and in general is not equal to λa1 + (1− λ)a2. See panel (a).

Let vλ = λv1 + (1 − λ)v2. We proceed to show v(bλ) > vλ. For this, it suffices

to show that there exists v′ > vλ such that caλ,bλ,v′ is feasible. This involves several

1By Claim B.2, the minimal feasible price given total welfare b can be written as

min{p |h(x; a(b), b, b − p) ≤ cF (x)∀x ∈ [b, 1]}. Note h(x; a(b), b, b − p) = s − ρ(b)p log x−(b−p)
p .

Because ρ(b) is decreasing, it is easy to see that h(x; a(b), b, b− p) is increasing in b. By Claim A.1,
it is then easy to see that the minimal feasible price is increasing in b.
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a1 aλ a2 b1 bλ b2
x

µ

s

(x∗, y∗)

(a) a1 < a2

a1 = a2 = aλ b1 bλ b2
x

µ

s

(x∗, y∗)

(b) a1 = a2

Figure B.2: Illustration of caλ,bλ,vλ over interval [aλ, bλ]

steps.

Step 1: h(x; aλ, bλ, vλ) ≤ cF (x), for x ∈ (b2, 1].

For x ∈ (b2, 1], we have

h(x; aλ, bλ, vλ)

=s− y∗ − s
bλ − x∗

(bλ − vλ) log
x− vλ

bλ − vλ

=s− y∗ − s
bλ − x∗

(bλ − vλ) log

[
λ(b1 − v1)

bλ − vλ
x− v1

b1 − v1

+
(1− λ)(b2 − v2)

bλ − vλ
x− v2

b2 − v2

]
≤s− λ(y∗ − s)

bλ − x∗
(b1 − v1) log

x− v1

b1 − v1

− (1− λ)(y∗ − s)
bλ − x∗

(b2 − v2) log
x− v2

b2 − v2

=
λ(b1 − x∗)
bλ − x∗

h(x; a1, b1, v1) +
(1− λ)(b2 − x∗)

bλ − x∗
h(x; a2, b2, v2)

≤λ(b1 − x∗)
bλ − x∗

ca1,b1,v1(x) +
(1− λ)(b2 − x∗)

bλ − x∗
ca2,b2,v2(x) ≤ cF (x), (B.4)

where the first inequality comes from concavity of the logarithm function.

Step 2: h(x; aλ, bλ, vλ) < cF (x) for x ∈ (b2, 1].

Suppose not. There exists x̂ ∈ (b2, 1] such that h(x̂; aλ, bλ, vλ) = cF (x̂). Then, at

this x̂ all the inequalities in (B.4) must be equalities. For the first inequality to be

an equality, we must have

x̂− v1

b1 − v1

=
x̂− v2

b2 − v2

, (B.5)
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because the logarithm function is strictly concave. For the other inequalities to be

equalities, we must have

h(x̂; a1, b1, v1) = h(x̂; a2, b2, v2). (B.6)

Because h(x; ai, bi, vi) = s − ρ(bi)(bi − vi) log x−vi
bi−vi for i = 1, 2, equations (B.5) and

(B.6) together imply that the equilibrium expected profits of a matched firm under

ca1,b1,v1 and ca2,b2,v2 are equal: ρ(b1)(b1 − v1) = ρ(b2)(b2 − v2) = π. This observation

has two implications. First, because b1 < b2 by assumption, we know ρ(b1) > ρ(b2).

Thus, we must have b1 − v1 < b2 − v2. Second, because hx(x; ai, bi, vi) = − π
x−vi

for i = 1, 2, the slopes of these two curves, h(x; a1, b1, v1) and h(x; a2, b2, v2), are

uniformly ranked over (b2, 1]. Because h(b2; a1, b1, v1) < s = h(b2; a2, b2, v2), for (B.6)

to hold, we must have − π
x−v1 > − π

x−v2 for x > b2, implying v1 < v2. Combining

b1 − v1 < b2 − v2 and v1 < v2 implies x̂−v1
b1−v1 >

x̂−v1
b2−v2 >

x̂−v2
b2−v2 , which contradicts (B.5).

Therefore, h(x; aλ, bλ, vλ) < cF (x) for all x ∈ (b2, 1].

Step 3: there exists v′ > vλ such that h(x; aλ, bλ, v′) ≤ cF (x) for x ∈ [bλ, 1].

For x ∈ [bλ, b2), h(x; aλ, bλ, vλ) ≤ s < ca2,b2,v2(x) ≤ cF (x). See Figure B.2 for

the strict inequality. For x = b2, h(b2; aλ, bλ, vλ) < s = ca2,b2,v2(b2) ≤ cF (b2). These

observations, together with Step 2, imply h(x; aλ, bλ, vλ) < cF (x) for all x ∈ [bλ, 1].

Then, by uniform continuity, there exists v′ > vλ such that h(x; aλ, bλ, v′) ≤ cF (x) for

all x ∈ [bλ, 1].

Step 4: caλ,bλ,v′ is feasible and therefore v(bλ) ≥ v′ > vλ.

By Step 3, caλ,bλ,v′ ≤ cF over [bλ, 1]. For x ∈ [aλ, bλ], Figure B.2 shows caλ,bλ,v′(x) ≤

max{ca1,b1,v1(x), ca2,b2,v2(x)} ≤ cF (x). Hence, caλ,bλ,v′ is feasible, completing the proof.
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Appendix C Proof of Proposition 3

In this and the next sections, the primary concern is how a change in search cost affects

the determination of the consumer-optimal signal distribution. Because search cost

s is also a parameter of h function, we explicitly add it as an argument and write

h(x; a, b, v, s). We do the same for v(b), a(b), and ρ(b) defined in Appendix B.2, and

write them as v(b, s), a(b, s), and ρ(b, s), respectively. We also write csa,b,v to denote

an incremental benefit function designed for search cost s.2 Throughout this and the

next sections, we fix 0 <
¯
s < s̄ < s∗.

C.1 Proof of part (i)

Part (i) is a direct corollary of the following claim, which will also be used in the

proof of part (ii).

Claim C.1. Suppose cs̄a,b,v is feasible under search cost s̄. Let b′ = b +
s̄−

¯
s

ρ
, where

ρ = µ−s̄−a
b−a is the probability of trade under cs̄a,b,v. Then, there exists v′ > v such that

c̄
s
a,b′,v′ is feasible under search cost

¯
s.

a b b′
x

µ

s̄

¯
s

cs̄a,b,v

Figure C.1: Proof of Claim C.1

2Note that csa,b,v and cs
′

a,b,v are different if s 6= s′, even though the parameters (a, b, v) are the
same.
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Proof. The proof is most easily understood by looking at Figure C.1. The blue curve

represents cs̄a,b,v. By construction, it is a straight line over [a, b] with slope −ρ. The

red line over [b, b′] is its extension, which intersects the horizontal line of value
¯
s at

exactly b′ = b+
s̄−

¯
s

ρ
.

Consider the curve h(x; a, b′, v,
¯
s) and compare it to h(x; a, b, v, s̄). At x = b′,

h(b′; a, b′, v,
¯
s) =

¯
s < cs̄a,b,v(b

′) = h(b′; a, b, v, s̄), as is depicted in Figure (C.1). For

x > b′, we have hx(x; a, b′, v,
¯
s) = −ρ(b′−v)

x−v = −ρ(b−v)
x−v −

s̄−
¯
s

x−v < −
ρ(b−v)
x−v = hx(x; a, b, v, s̄).

Therefore, h(x; a, b′, v,
¯
s) < h(x; a, b, v, s̄) for all x ∈ [b′, 1]. By uniform continuity,

there exists v′ > v such that h(x; a, b′, v′,
¯
s) ≤ h(x; a, b, v, s̄) for all x ∈ [b′, 1]. This

immediately implies that c̄
s
a,b′,v′ is feasible under search cost

¯
s.

C.2 Proof of part (ii)

Claim C.2. If v(b, s̄) is increasing over an interval [b1, b2], then v(b,
¯
s) is increasing

over the interval [b1 +
s̄−

¯
s

ρ(b1,s̄)
, b2 +

s̄−
¯
s

ρ(b2,s̄)
].

a(b1, s̄) a(b2, s̄) b1 b2
x

µ

s̄

¯
s

|slope| = ρ(b1, s̄)

|slope| = ρ(b2, s̄)

b2 +
s̄−

¯
s

ρ(b2,s̄)

b1 +
s̄−

¯
s

ρ(b1,s̄) cF

Figure C.2: Illustration of the intervals in Claim C.2

Figure C.2 is helpful in understanding Claim C.2. Focus on the larger search cost

s̄ first and consider an interval [b1, b2]. It is described by the blue interval. Recall

that a(b, s̄) is the minimal feasible low match value atom and ρ(b, s̄) = µ−s̄−a(b,s̄)
b−a(b,s̄)
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is the resulting maximal feasible probability of trade. The two black straight lines

represent x 7→ s − ρ(b1, s̄)(x − b1) and x 7→ s − ρ(b2, s̄)(x − b1), respectively. The

line x 7→ s − ρ(b1, s̄)(x − b1) intersects the horizontal line of
¯
s at b1 +

s̄−
¯
s

ρ(b1,s̄)
, and

the line x 7→ s − ρ(b2, s̄)(x − b1) intersects at b2 +
s̄−

¯
s

ρ(b2,s̄)
. The red interval describes

[b1 +
s̄−

¯
s

ρ(b1,s̄)
, b2 +

s̄−
¯
s

ρ(b2,s̄)
]. Claim C.2 states that if v( · , s̄) is increasing over the blue

interval, so is v( · ,
¯
s) over the red one. The proof of Claim C.2 is very involved. We

devote Appendix D to its proof.

From the graph, it is also easy to observe that the following two equations hold

for all b: a(b+
s̄−

¯
s

ρ(b,s̄)
,
¯
s) = a(b, s̄) and ρ(b+

s̄−
¯
s

ρ(b,s̄)
,
¯
s) = ρ(b, s̄). Moreover, by Claim B.2,

we have a∗(s) = a(b∗(s), s) and ρ∗(s) = ρ(b∗(s), s). We will use these relationships in

the proof of part (ii) of Proposition 3.

Proof of part (ii) of Proposition 3. Because v( · , s̄) is strictly concave by Claim B.3

and achieves its maximum at b∗(s̄), it is increasing over [µ− s̄, b∗(s̄)]. By Claim C.2,

we know that v( · ,
¯
s) is increasing over [µ−

¯
s, b∗(s̄)+

s̄−
¯
s

ρ∗(s̄)
]. Therefore, b∗(

¯
s) ≥ b∗(s̄)+

s̄−
¯
s

ρ∗(s̄)
> b∗(s̄). Moreover, a∗(

¯
s) = a(b∗(

¯
s),

¯
s) ≥ a(b∗(s̄) +

s̄−
¯
s

ρ∗(s̄)
,
¯
s) = a(b∗(s̄), s̄) = a∗(s̄),

where the inequality is because a( · , s) is increasing. Similarly, ρ∗(
¯
s) ≤ ρ∗(s̄).

C.3 Proof of part (iii)

v b
x

µ

1

cF

s

bsa

(a) Illustration of a, b and bs constructed in
the proof of lims↓0 v

∗(s) = 1

x

µ

1

cF

s

b∗(s)a∗(s) E[q|q < b∗(s)]

(b) Illustration of ρ∗(s) ≥ 1− F (b∗(s)−)

Figure C.3: Proof of part (iii) of Proposition 3
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Proof of part (iii) of Proposition 3. To show lims↓0 v
∗(s) = 1, it suffices to show that

lims↓0 v
∗(s) ≥ 1 − ε for any ε > 0. Fix an arbitrary ε ∈ (0, 1 − µ). Let b = 1 − ε

2
.

Pick 0 < a < µ such that −µ−a
b−a (x − b) ≤ cF (x) for all x ∈ [a, b]. Let ρ = µ−a

b−a and

bs = b− s
ρ

for s > 0. See panel (a) in Figure C.3 for illustrations of a and b, and the

construction of bs. The slope of the red line is −ρ. Let v = 1 − ε. It is easy to see

that there exists s′ > 0 such that for all s < s′, we have a ∈ [0, µ− s), bs ≥ µ− s and

v ∈ [a, bs). Thus, csa,bs,v is well-defined when s < s′. It is feasible if and only if

h(x; a, bs, v, s) = s− ρ(bs − v) log
x− v
bs − v

≤ cF (x), ∀x ∈ [bs, 1]. (C.1)

Because h(x; a, b0, v, 0) = −ρ(b − v) log x−v
b−v < cF (x) for all x ∈ [b, 1], uniform conti-

nuity implies that there exists s′′ > 0 such that (C.1) holds for s < s′′. Therefore,

when s < min{s′, s′′}, csa,bs,v is feasible. This, in turn, implies v∗(s) ≥ v = 1− ε when

s < min{s′, s′′}. Hence, lims↓0 v
∗(s) ≥ 1 − ε. Because v∗(s) < b∗(s) < 1 for all s,

lims↓0 b
∗(s) = 1 too.

Consider lims↓0 a
∗(s) and lims↓0 ρ

∗(s) now. By Claim B.2, we know a∗(s) =

a(b∗(s), s). It is easy to see from panel (b) in Figure C.3 that a∗(s) ≤ E[q|q < b∗(s)]

and hence ρ∗(s) ≥ 1− F (b∗(s)−). This implies lims↓0 ρ
∗(s) ≥ lims↓0 1− F (b∗(s)−) =

1−F (1−). On the other hand, because csa∗(s),b∗(s),v∗(s) is feasible, we know s−ρ∗(s)(x−

b∗(s)) ≤ cF (x) for all x ∈ [a∗(s), b∗(s)]. For any µ < x < 1, x ∈ [a∗(s), b∗(s)]

when s is sufficiently small. Hence, for sufficiently small s, ρ∗(s) ≤ cF (x)−s
b∗(s)−x , implying

lims↓0 ρ
∗(s) ≤ cF (x)

1−x = cF (x)−cF (1)
1−x . Letting x ↑ 1, we obtain lims↓0 ρ

∗(s) ≤ −c′F (1−) =

1−F (1−). Therefore, lims↓0 ρ
∗(s) = 1−F (1−). Because ρ∗(s) = µ−s−a∗(s)

b∗(s)−a∗(s) , we know

a∗(s) = µ−s−ρ∗(s)b∗(s)
1−ρ∗(s) . Therefore, lims↓0 a

∗(s) = µ−1(1−F (1−))
F (1−)

= E[q|q < 1].

12



Appendix D Proof of Claim C.2

We prove Claim C.2 by contradiction. For this purpose, we maintain the assumption

that Claim C.2 does not hold in this section.

D.1 A Special interval

The following claim shows the existence of a special interval [b1, b2] that satisfies

several properties. We will focus exclusively on this interval throughout the rest of

the proof.

Claim D.1. There exists b1 < b2 such that the following properties hold:

(i) v(b, s̄) is strictly increasing over [b1, b2], but v(b,
¯
s) is strictly decreasing over

[b1 +
s̄−

¯
s

ρ(b1,s̄)
, b2 +

s̄−
¯
s

ρ(b2,s̄)
].

(ii) h(x; a(b1, s̄), b1, v(b1, s̄), s̄) >
¯
s at x = b2 +

s̄−
¯
s

ρ(b2,s̄)
.

Claim D.1 can be best understood from Figure D.1. Similarly as in Figure C.2,

the blue line represents the desired interval [b1, b2] for s̄ and the red line represents the

interval [b1 +
s̄−

¯
s

ρ(b1,s̄)
, b2 +

s̄−
¯
s

ρ(b2,s̄)
] for

¯
s. Part (i) requires that v(b, s̄) be increasing over

the blue range and v(b,
¯
s) is decreasing over the red range. The green curve in Figure

D.1 represents cs̄a(b1,s̄),b1,v(b1,s̄)
. Part (ii) requires that this curve at x = b2 +

s̄−
¯
s

ρ(b1,s̄)
be

above the horizontal line of
¯
s. In a nutshell, part (i) is a direct consequence of our

assumption that Claim C.2 does not hold. Part (ii) then comes from continuity. It

basically requires that the interval [b1, b2] be small.

Proof. For ease of exposition, define φ(b) ≡ b +
s̄−

¯
s

ρ(b,s̄)
. Because ρ(b, s̄) is continuous

in b, so is φ. Because Claim C.2 does not hold, there exists an interval [b′1, b
′
2]

such that v(b, s̄) is strictly increasing over it, but v(b,
¯
s) is not strictly increasing

over [φ(b′1), φ(b′2)]. Because v(b,
¯
s) is strictly concave in b by Claim B.3, there exists

b1 ∈ (b′1, b
′
2) such that v(b,

¯
s) is strictly decreasing over [φ(b1), φ(b′2)]. Hence, the

13



a(b1, s̄) b1 b2 b2 +
s̄−

¯
s

ρ(b2,s̄)

x

µ

s̄

¯
s

cs̄a(b1,s̄),b1,v(b1,s̄)

v( · , s̄) is increasing

v( · ,
¯
s) is decreasing

(x∗, y∗)

Figure D.1: Graph for Claim D.1

interval [b1, b
′
2] satisfies part (i). To satisfy part (ii), we need to shrink it to [b1, b2] for

some b2 close enough to b1. Clearly, shrinking [b1, b
′
2] does not violate part (i).

Because h(φ(b1); a(b1, s̄), b1, v(b1, s̄), s̄) >
¯
s by construction of h function, there

exists, by continuity, b2 ∈ (b1, b
′
2] such that h(φ(b2); a(b1, s̄), b1, v(b1, s̄), s̄) >

¯
s. The

interval [b1, b2] is desired.

D.2 Change of variables

In what follows, we will derive a contradiction to Claim D.1. The analysis is compli-

cated and it is not convenient to work with signal cutoff b. The major reason is that

the domain of the signal cutoffs are different for different search costs. For instance,

the domain is [b1, b2] for s =
¯
s, whereas it becomes [b1 +

s̄−
¯
s

ρ(b1,s̄)
, b2 +

s̄−
¯
s

ρ(b2,s̄)
] for s = s̄.

For more convenient analysis, we will work with the probability of trade instead of

signal cutoff, as the situation we focus on has a very natural one-to-one mapping

between the probabilities of trade and signal cutoffs.

Figure D.2, which basically reproduces Figure D.1, gives an explanation of this

one-to-one mapping and the change of variables. The two blue curves represent

cs̄a(b1,s̄),b1,v(b1,s̄)
and cs̄a(b2,s̄),b2,v(b2,s̄)

, respectively as before. Similarly as the situation in

the proof of Claim B.3, these two curves intersect at some point above s̄. See the

14



black dot in Figure D.2. Denote this intersection by (x∗, y∗). Let
¯
ρ ≡ ρ(b2, s̄) and

ρ̄ ≡ ρ(b1, s̄). We know
¯
ρ < ρ̄. Every b ∈ [b1, b2] is uniquely identified by a ρ ∈ [

¯
ρ, ρ̄]

according to b = x∗ + y∗−s̄
ρ

. This is illustrated by the red line that starts at (x∗, y∗)

and has slope −ρ. The intersection of this line and the horizontal s̄ line is exactly

b = x∗ + y∗−s̄
ρ

. Obviously, for
¯
s, a similar relationship between signal cutoff and

probability of trade exists.

b1 b2 b̂(
¯
ρ,

¯
s)

x

s̄

s̄

(x∗, y∗)

|slope| = ρ̄

|slope| =
¯
ρ

|slope| = ρ ∈ [
¯
ρ, ρ̄]

cF

cs̄a(b2,s̄),b2,v(b2,s̄)

(ρ̄, s̄)

(
¯
ρ, s̄)

(ρ̄,
¯
s) (

¯
ρ,

¯
s)

Figure D.2: Change of variables

Formally, for (ρ, s) ∈ [
¯
ρ, ρ̄]× [

¯
s, s̄], define b̂(ρ, s) ≡ x∗ + y∗−s

ρ
. Note that b̂(ρ, s) is

decreasing in ρ. Moreover, we have b1 = b̂(ρ̄, s̄), b2 = b̂(
¯
ρ, s̄), b1 +

s̄−
¯
s

ρ(b1,s̄)
= b̂(ρ̄,

¯
s), and

b2 +
s̄−

¯
s

ρ(b2,s̄)
= b̂(

¯
ρ,

¯
s). This is also illustrated in Figure D.2. We label the four blue dots

by the corresponding pair (ρ, s) ∈ {
¯
ρ, ρ̄}× {

¯
s, s̄}. This change of variables effectively

eliminates the problem of moving domains of the signal cutoffs for different search

costs.

Similarly, for (ρ, s) ∈ {
¯
ρ, ρ̄} × {

¯
s, s̄}, let v̂(ρ, s) ≡ v(b̂(ρ, s), s).3 For instance,

v̂(ρ̄, s̄) = v(b1, s̄) is just the highest consumer surplus given signal cutoff b1 under

3We can define v̂ for all pairs (ρ, s) ∈ [
¯
ρ, ρ̄] × [

¯
s, s̄]. But in the following analysis, we will never

need such v̂(ρ, s) if (ρ, s) 6∈ {
¯
ρ, ρ̄} × {

¯
s, s̄}.
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search cost s̄. By Claims C.1 and D.1, we obtain a chain of inequalities

v̂(ρ̄, s̄) < v̂(
¯
ρ, s̄) < v̂(

¯
ρ,

¯
s) < v̂(ρ̄,

¯
s), (D.1)

where the first and the third inequalities come from part (i) of Claim D.1. The

second inequality comes from Claim C.1. These relationships, which are summarized

in Figure D.3, are important for the following analysis.

v̂(ρ̄, s̄) v̂(
¯
ρ, s̄)

v̂(ρ̄,
¯
s) v̂(

¯
ρ,

¯
s)>

CD.1

<
CD.1

> CC.1

Figure D.3: Comparison of v̂ for different pairs of (ρ, s)

Finally, for (ρ, s) ∈ [
¯
ρ, ρ̄]× [

¯
s, s̄] and v < b̂(ρ, s), define function

ĥ(x; ρ, v, s) ≡ s− ρ(b̂(ρ, s)− v) log
x− v

b̂(ρ, s)− v
, ∀x ∈ [b̂(ρ, s), 1].

Function ĥ is the change-of-variables analogue of function h. Instead of using signal

cutoff b and low match value atom a as parameters, ĥ directly specifies the probability

of trade ρ and the corresponding signal cutoff by b̂(ρ, s). In particular, when (ρ, s) ∈

{
¯
ρ, ρ̄}×{

¯
s, s̄}, for any v, ĥ( · ; ρ, v, s) just coincides with h( · ; a(b̂(ρ, s), s), b̂(ρ, s), v, s)

— the h curve for signal cutoff b̂(ρ, s) with the maximal feasible probability of trade

under search cost s.4 Part (ii) of Claim D.1 then can be equivalently expressed as

ĥ(b̂(
¯
ρ,

¯
s); ρ̄, v̂(ρ̄, s̄), s̄) >

¯
s.

4We point out that when ρ 6=
¯
ρ or ρ̄, the curve ĥ( · ; ρ, v, s) may be different from the curve

h( · ; a(b̂(ρ, s), s), b̂(ρ, s), v, s), although we do not need this fact in the following analysis. This is

because the maximal feasible probability of trade for signal cutoff b̂(ρ, s) under search cost s, i.e.,

ρ(b̂(ρ, s), s), may be strictly larger than ρ.
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Two obvious properties of ĥ are worth mentioning. First, it is smooth, not only in

x, but in all parameters ρ, v, and s. It is this property that creates a useful “bridge”

to link the highest consumer surplus v̂ at the four discrete points {
¯
ρ, ρ̄} × {

¯
s, s̄}.5

Second, all else being equal, higher consumer surplus v leads to a higher ĥ curve, i.e.,

ĥv > 0. This is simply an inherited property from h. See Claim A.1. We will use this

property frequently below.

D.3 Binding feasibility constraints

For each pair (ρ, s) ∈ {
¯
ρ, ρ̄} × {

¯
s, s̄}, v̂(ρ, s) is the corresponding highest feasible

consumer surplus. It is straightforward to see, by uniform continuity, that some of the

feasibility constraints ĥ(x; ρ, v̂(ρ, s), s) ≤ cF (x) for x ∈ [b̂(ρ, s), 1] must be binding.

Among these four pairs, we are particularly interested in the binding constraints of

(ρ̄, s̄) and (
¯
ρ,

¯
s).

Claim D.2. Consider the pair (ρ̄, s̄). At the highest consumer surplus v̂(ρ̄, s̄), there

exists x† ∈ (b̂(
¯
ρ, s̄), 1] such that the feasibility constraint is binding at x†. That is,

ĥ(x†; ρ̄, v̂(ρ̄, s̄), s̄) = cF (x†) < s̄.

There may be multiple binding points. We pick an arbitrary one, x†, and fix it

throughout the following analysis. We do want to emphasize that this binding point

must satisfy x† > b̂(
¯
ρ, s̄) = b2. In Figure D.2, this means x† must appear to the

right of b2. This is obvious from the graph. The curve h( · ; ρ̄, v̂(ρ̄, s̄), s̄) (not drawn)

is below s̄ by construction, whereas the green curve, which represents cF , is above s̄

over [b1, b2].6 Hence, binding cannot occur over this range. Consequently, b̂(ρ, s̄) < x†

for all ρ ∈ [
¯
ρ, ρ̄]. We will use this fact later.

5In contrast, for example, the function h(x; a(b, s), b, v, s) may not be differentiable in b, as the
lowest feasible atom a(b, s) may not be differentiable.

6The fundamental reason is the feasibility of cs̄a(b2,s̄),b2,v̂(b2,s̄)
. That is, the blue curve on the right

is below cF .
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Claim D.3. Consider the pair (
¯
ρ,

¯
s). At the highest consumer surplus v̂(

¯
ρ,

¯
s), there

exists x† ∈ (b̂(
¯
ρ,

¯
s), 1] such that the feasibility constraint is binding at x†. That is,

ĥ(x†;
¯
ρ, v̂(

¯
ρ,

¯
s),

¯
s) = cF (x†) <

¯
s.

Similarly as the pair (ρ̄, s̄), there may be multiple binding points too for the pair

(
¯
ρ,

¯
s). We pick an arbitrary one, x†, and fix it throughout the following analysis.

Note that b̂(
¯
ρ, s̄) < x† implies b̂(ρ, s) < x† for all (ρ, s) ∈ [

¯
ρ, ρ̄] × [

¯
s, s̄]. We will also

use this fact later.

The following claim compares x† from Claim D.2 and x† from Claim D.3. This is

where we use part (ii) of Claim D.1.

Claim D.4. We have x† ≤ x†.

Proof. We compare the two curves, ĥ( · ; ρ̄, v̂(ρ̄, s̄), s̄) and ĥ( · ;
¯
ρ, v̂(

¯
ρ,

¯
s),

¯
s), over the

interval [b̂(
¯
ρ,

¯
s), x†].

At x = b̂(
¯
ρ,

¯
s), we know from part (ii) of Claim D.1 that

ĥ(b̂(
¯
ρ,

¯
s); ρ̄, v̂(ρ̄, s̄), s̄) >

¯
s = ĥ(b̂(

¯
ρ,

¯
s);

¯
ρ, v̂(

¯
ρ,

¯
s),

¯
s). (D.2)

At x = x†, we know

ĥ(x†; ρ̄, v̂(ρ̄, s̄), s̄) ≤ cF (x†) = ĥ(x†;
¯
ρ, v̂(

¯
ρ,

¯
s),

¯
s), (D.3)

where the inequality comes from feasibility. Recall that v̂(ρ̄, s̄) < v̂(
¯
ρ,

¯
s) in (D.1).

Then, combining (D.2) and (D.3), and applying a similar argument as that in the

proof of Claim A.3, we can show that there exists x̃ ∈ (b̂(
¯
ρ,

¯
s)), x†) such that

ĥx(x; ρ̄, v̂(ρ̄, s̄), s̄) < ĥx(x;
¯
ρ, v̂(

¯
ρ,

¯
s),

¯
s), ∀x ≥ x̃. (D.4)

Combining (D.3) and (D.4) yields ĥ(x; ρ̄, v̂(ρ̄, s̄), s̄) < ĥ(x;
¯
ρ, v̂(

¯
ρ,

¯
s),

¯
s) ≤ cF (x) for all
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x ∈ (x†, 1], where the second inequality is simply the feasibility constraint. Because

ĥ(x†; ρ̄, v̂(ρ̄, s̄), s̄) = cF (x†), we immediately know that x† ≤ x†.

D.4 Consumer surplus that makes a certain feasibility con-

straint binding

Let v†(ρ, s) : [
¯
ρ, ρ̄]× [

¯
s, s̄]→ R be the implicit function defined by equation

ĥ(x†; ρ, v†(ρ, s), s) = cF (x†). (D.5)

In words, v†(ρ, s) is the value of the consumer surplus that makes the particular

feasibility constraint ĥ(x†; ρ, v†(ρ, s), s) ≤ cF (x†) binding. The following claim is

straightforward. It verifies that v† is well-defined and compares v† and v̂.

Claim D.5. The following hold.

(i) For every pair (ρ, s) ∈ [
¯
ρ, ρ̄]× [

¯
s, s̄], v†(ρ, s) ∈ [0, b̂(ρ, s)) is well-defined.

(ii) For every pair (ρ, s) ∈ {
¯
ρ, ρ̄} × {

¯
s, s̄}, we have v†(ρ, s) ≥ v̂(ρ, s), with equality

if (ρ, s) = (
¯
ρ,

¯
s).

Proof. Because b̂(ρ, s) < x† for all (ρ, s) ∈ [
¯
ρ, ρ̄]× [

¯
s, s̄] as we mentioned after Claim

D.3, x† is in the domain of every ĥ( · ; ρ, v, s) curve. Applying the same argument as

in the proof of Claim B.3 in the appendix, we know there exists v ∈ [0, b̂(ρ, s)) such

that h(x†; ρ, v, s) ≤ cF (x†). Because limv↑b̂(ρ,s) h(x†; ρ, v, s) = s ≥
¯
s > cF (x†) and

because ĥv > 0, we know there exists a unique v†(ρ, s) ∈ [0, b̂(ρ, s)) such that (D.5)

holds.

For (ρ, s) ∈ {
¯
ρ, ρ̄} × {

¯
s, s̄}, we know ĥ(x†; ρ, v̂(ρ, s), s) ≤ cF (x†) by feasibility.

Because ĥ(x†; ρ, v†(ρ, s), s) = cF (x†) by construction and because ĥv > 0 again, we

must have v†(ρ, s) ≥ v̂(ρ, s). Clearly, we have v†(
¯
ρ,

¯
s) = v̂(

¯
ρ,

¯
s) from the definition of

x†.
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The greatest advantage of v† is its differentiability by the implicit function theo-

rem. The following claim, making use of this property, compares v†(
¯
ρ, s̄) and v†(ρ̄, s̄).

Claim D.6. We have v†(
¯
ρ, s̄) < v†(ρ̄, s̄).

Proof. By the implicit function theorem, we can calculate

v†ρs =
(x† − v†)(x† − x∗)

(
x† − b̂− (b̂− v†) log x†−v†

b̂−v†

)
log x†−v†

b̂−v†

ρ2
(
b̂− x† + (x† − v†) log x†−v†

b̂−v†

)3

+
(x† − v†) log x†−v†

b̂−v†

ρ2
(
b̂− x† + (x† − v†) log x†−v†

b̂−v†

) ,
where b̂ is b̂(ρ, s) and v† is v†(ρ, s) for short. Recall that x† > b̂(ρ, s) for all (ρ, s), as

we mentioned after Claim D.3. This directly implies x† > x∗ as x∗ < b̂(ρ̄, s̄). Because

b̂(ρ, s) > v†(ρ, s) for all (ρ, s), we also have x† > v†(ρ, s) for all (ρ, s). Because

x† − b̂ − (b̂ − v†) log x†−v†
b̂−v† > x† − b̂ − (b̂ − v†)

(
x†−v†
b̂−v† − 1

)
= 0 and b̂ − x† + (x† −

v†) log x†−v†
b̂−v† > b̂ − x† − (x† − v†)

(
b̂−v†
x†−v† − 1

)
= 0, we know v†sρ > 0. Therefore,

v†(ρ̄, s̄) − v†(
¯
ρ, s̄) > v†(ρ̄,

¯
s) − v†(

¯
ρ,

¯
s) ≥ v̂(ρ̄,

¯
s) − v̂(

¯
ρ,

¯
s) > 0, where the second

inequality comes from v†(ρ̄,
¯
s) ≥ v̂(ρ̄,

¯
s) and v†(

¯
ρ,

¯
s) = v̂(

¯
ρ,

¯
s). The last inequality

comes from (D.1). Therefore, v†(
¯
ρ, s̄) < v†(ρ̄, s̄).

By Claim D.4, we know x† ≤ x†. But the fact v̂(ρ̄, s̄) < v̂(
¯
ρ, s̄) from part (i) of

Claim D.1 and Claim D.6 directly rule out the possibility x† = x†. This is stated in the

next claim. It also compares the two curves, ĥ( · ; ρ̄, v†(ρ̄, s̄), s̄) and ĥ( · ;
¯
ρ, v†(

¯
ρ, s̄), s̄),

at x = x†. This comparison is a direct corollary of Claim D.6 and the single-crossing

property established in Claim A.3.

Claim D.7. We have x† < x† and

ĥ(x†; ρ̄, v
†(ρ̄, s̄), s̄) < ĥ(x†;

¯
ρ, v†(

¯
ρ, s̄), s̄). (D.6)
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Proof. If x† = x†, then v†(ρ̄, s̄) = v†(ρ̄, s̄). Hence, v̂(ρ̄, s̄) = v†(ρ̄, s̄). Claim D.6 then

implies v̂(ρ̄, s̄) > v†(
¯
ρ, s̄) ≥ v̂(

¯
ρ, s̄), contradicting the fact v̂(ρ̄, s̄) < v̂(

¯
ρ, s̄). Therefore,

by Claim D.4, we must have x† < x†.

Recall ĥ( · ; ρ̄, v†(ρ̄, s̄), s̄) = h( · ; a(b1, s̄), b1, v
†(ρ̄, s̄), s̄) and ĥ( · ;

¯
ρ, v†(

¯
ρ, s̄), s̄) =

h( · ; a(b2,
¯
s), b2, v

†(
¯
ρ, s̄), s̄). Because (i) b1 < b2, (ii) v†(ρ̄, s̄) > v†(

¯
ρ, s̄) by Claim D.6,

(iii) these two curves intersect at x† by the definition of v†(ρ̄, s̄) and v†(
¯
ρ, s̄), and (iv)

x† < x†, Claim A.3 immediately implies (D.6).

Similarly as v†, for ρ ∈ {ρ̄,
¯
ρ}, let v†(ρ, s̄) ∈ [0, b̂(ρ, s)) be the value of the consumer

surplus that makes the feasibility constraint ĥ(x†; ρ, v†(ρ, s̄), s̄) ≤ cF (x†) binding.

That is,

ĥ(x†; ρ, v†(ρ, s̄), s̄) = cF (x†). (D.7)

Clearly, v†(ρ̄, s̄) = v̂(ρ̄, s̄) by the definition of x† in Claim D.2. As for Claim D.5, we

can similarly show that v†(
¯
ρ, s̄) is well-defined and v†(

¯
ρ, s̄) ≥ v̂(

¯
ρ, s̄).7

The next claim compares v†(
¯
ρ, s̄) and v†(

¯
ρ, s̄).

Claim D.8. We have v†(
¯
ρ, s̄) < v†(

¯
ρ, s̄).

Proof. Notice that

ĥ(x†;
¯
ρ, v†(

¯
ρ, s̄), s̄) = ĥ(x†; ρ̄, v†(ρ̄, s̄), s̄) ≤ ĥ(x†; ρ̄, v

†(ρ̄, s̄), s̄) < ĥ(x†;
¯
ρ, v†(

¯
ρ, s̄), s̄),

where the equality comes from the definition of v†, i.e., (D.7). The first inequality

comes from v†(ρ̄, s̄) = v̂(ρ̄, s̄) ≤ v†(ρ̄, s̄) and ĥv > 0. The last inequality comes from

Claim D.7. Hence, because ĥv > 0 again, we know v†(
¯
ρ, s̄) < v†(ρ̄, s̄).

Figure D.4 provides an illustration of the ĥ curves involved in Claims D.6 to D.8.

The green curve represents cF . The solid red one represents ĥ( · ; ρ̄, v†(ρ̄, s̄), s̄) and the

solid blue one represents ĥ( · ;
¯
ρ, v†(

¯
ρ, s̄), s̄). By the definition of v†, these three curves

7For any ρ ∈ (
¯
ρ, ρ̄), we can similarly define v†(ρ, s̄). But we do not need it.
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Figure D.4: Illustration of Claims D.6 to D.8

intersect at x†. By Claim D.6 and the single-crossing property established in Claim

A.3, this red curve is, to the left of x†, everywhere below the blue one. The dashed red

curve is ĥ( · ; ρ̄, v†(
¯
ρ, s̄), s̄), or equivalently ĥ( · ; ρ̄, v̂(

¯
ρ, s̄), s̄). It is the highest feasible

curve (i.e., everywhere below cF ) for (ρ̄, s̄), and intersects cF at x†, which is to the

left of x† by Claim D.7. It is everywhere below the solid red curve, simply because it

is below cF at x† by feasibility while the solid red curve intersects. Hence, the solid

blue curve is above cF at x†, which in turn implies that it is above the dashed blue

curve at x†, which presents ĥ( · ;
¯
ρ, v†(

¯
ρ, s̄), s̄) and intersects cF at x†. This directly

implies v†(
¯
ρ, s̄) < v†(

¯
ρ, s̄), as is stated in Claim D.8.

Based on the above analysis, Claim D.10 below will establish the last comparison,

v†(
¯
ρ, s̄) ≤ v†(ρ̄, s̄), from which we can derive a contradiction. But to prove this

inequality, we need an additional result: x∗ ≤ v†(ρ̄, s̄). It is a direct consequence of

Claim D.1. Recall that x∗ is the intersection of the two blue curves in Figure D.2.

Claim D.9. We have x∗ ≤ v̂(ρ̄, s̄).

Proof. Suppose, by contradiction, x∗ > v̂(ρ̄, s̄). Pick λ ∈ (0, 1) close enough to 1

such that x∗ > vλ ≡ λv̂(ρ̄, s̄) + (1 − λ)v̂(
¯
ρ, s̄). Let ρλ ∈ (

¯
ρ, ρ̄) be the solution to

b̂(ρλ, s̄) = λb̂(ρ̄, s̄) + (1− λ)b̂(
¯
ρ, s̄). Note that b̂(ρλ, s̄) > vλ, as b̂(ρλ, s̄) > b̂(ρ̄, s̄) > x∗.

Inequality (B.4) shows, in terms of the current ĥ function, that ĥ(x; ρλ, vλ, s̄) ≤
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cF (x) for all x ∈ [b̂(ρλ, s̄), 1]. For all x ∈ [b̂(ρλ, s̄), 1] and ρ ∈ [ρλ, ρ̄], we have

ĥρ(x; ρ, vλ, s̄) = −1

ρ

[
(y∗ − s̄) + ρ(x∗ − vλ) log

x− vλ

b̂(ρ, s̄)− vλ

]
< 0,

where the inequality comes from our assumption that x∗ > vλ. Because ρλ < ρ̄, we

then have ĥ(x; ρ̄, vλ, s̄) < ĥ(x; ρλ, vλ, s̄) ≤ cF (x) for all x ∈ [b̂(ρλ, s̄), 1]. This in turn

implies v̂(ρ̄, s̄) ≥ vλ, because v̂(ρ̄, s̄) by definition is the highest consumer surplus for

the pair (ρ̄, s̄). But vλ = λv̂(ρ̄, s̄) + (1− λ)v̂(
¯
ρ, s̄) > v̂(ρ̄, s̄), because v̂(ρ̄, s̄) < v̂(

¯
ρ, s̄)

by Claim D.1. This is a contradiction. Therefore, we must have x∗ ≤ v̂(ρ̄, s̄).

We are now ready to prove the last inequality.

Claim D.10. We have v†(
¯
ρ, s̄) ≤ v†(ρ̄, s̄).

Proof. Suppose, by contradiction, v†(ρ̄, s̄) < v†(
¯
ρ, s̄). Recall that v†(ρ̄, s̄) = v̂(ρ̄, s̄) =

v(b1, s̄). Combining Claims D.6, D.8, and D.9, we obtain a chain of inequalities

x∗ ≤ v†(ρ̄, s̄) < v†(
¯
ρ, s̄) < v†(

¯
ρ, s̄) < v†(ρ̄, s̄). (D.8)

Because ĥv > 0, we know

ĥ(x†; ρ̄, v
†(ρ̄, s̄), s̄) =ĥ(x†; ρ̄, v

†(ρ̄, s̄), s̄)− ĥ(x†; ρ̄, v†(ρ̄, s̄), s̄) + cF (x†)

>ĥ(x†; ρ̄, v
†(

¯
ρ, s̄), s̄)− ĥ(x†; ρ̄, v†(

¯
ρ, s̄), s̄) + cF (x†). (D.9)

Note that ĥρv(x†; ρ, v, s̄) =
(v−x∗)(x†−b̂(ρ,s̄))
(x†−v)(b̂(ρ,s̄)−v)

+ log
x†−v

b̂(ρ,s̄)−v . Thus, for all ρ ∈ [
¯
ρ, ρ̄] and

v ∈ [v†(
¯
ρ, s̄), v†(

¯
ρ, s̄)], we have ĥρv > 0.8 Therefore,

ĥ(x†; ρ̄, v
†(

¯
ρ, s̄), s̄)− ĥ(x†; ρ̄, v†(

¯
ρ, s̄), s̄) > ĥ(x†;

¯
ρ, v†(

¯
ρ, s̄), s̄)− ĥ(x†;

¯
ρ, v†(

¯
ρ, s̄), s̄)

= ĥ(x†;
¯
ρ, v†(

¯
ρ, s̄), s̄)− cF (x†). (D.10)

8For every v ∈ [v†(
¯
ρ, s̄), v†(

¯
ρ, s̄)], (D.8) implies x∗ < v < v†(ρ̄, s̄) < b̂(ρ̄, s̄) ≤ b̂(ρ, s̄) < x† for all

ρ ∈ [
¯
ρ, ρ̄].

23



Combining (D.9) and (D.10), we obtain ĥ(x†; ρ̄, v
†(ρ̄, s̄), s̄) > ĥ(x†;

¯
ρ, v†(

¯
ρ, s̄), s̄), which

contradicts (D.6). See Figure D.4. The above inequality means that the solid red

curve is higher than the solid blue one at x†, which contradicts the graph. Therefore,

we must have v†(
¯
ρ, s̄) ≤ v†(ρ̄, s̄).

D.5 Contradiction

We are ready to prove Claim C.2.

Proof of Claim C.2. From the definitions of x† from Claim D.2 and v† from (D.7),

we know v†(ρ̄, s̄) = v̂(ρ̄, s̄) and v†(
¯
ρ, s̄) ≥ v̂(

¯
ρ, s̄). Claim D.10 then implies v̂(ρ̄, s̄) ≥

v̂(
¯
ρ, s̄). This contradicts the fact that v̂(ρ, s̄) is strictly decreasing is over [

¯
ρ, ρ̄] (or

equivalently, v(b, s̄) is strictly increasing over [b1, b2] by Claim D.1). This contradiction

originates from our hypothesis that Claim C.2 does not hold. Therefore, Claim C.2

must hold, completing the proof.

The diagram in panel (a) in Figure D.5 provides an overview of the proved in-

equalities. The diagram in panel (b) summarizes the above whole analysis.

Appendix E Proof of Proposition 4

We first prove the desired result when G itself a unit-elastic demand signal distribu-

tion. This is Claim E.1. Then, we apply it to prove Proposition 4.

Claim E.1. Suppose cG = ca,b,v for some values a, b, and v. Assume b > µ − s. If

(7) holds, then there exist b′ ∈ [µ− s, b) and v′ ∈ (v, b′) such that ca,b′,v′ ≤ ca,b,v.

Proof. Let x̄ be the intersection of h(x; a, b, v) and the x-axis so that h(x̄; a, b, v) = 0.

24



v̂(ρ̄, s̄) v̂(
¯
ρ, s̄)

x∗ v†(ρ̄, s̄) v†(
¯
ρ, s̄)

v†(ρ̄, s̄) v†(
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≤
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(a) Derived inequalities in the proof of Claim C.2
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Claim D.1

Claim D.4

Claim D.7Claim D.6 Claim D.8 Claim D.9

Claim D.10

Contradiction to Claim D.1

(b) Relationships between Claims D.1 to D.10

Figure D.5: Summary of the proof of Claim C.2

25



It is easy to calculate

hb(x̄; a, b, v) =
µ− s− a
(b− a)2

[
b− a− (v − a) log

x̄− v
b− v

]
=
µ− s− a
(b− a)2

[
b− a− (v − a)

s(b− a)

(µ− s− a)(b− v)

]
=
µ− s− a

(b− a)

[
1− s(v − a)

(µ− s− a)(b− v)

]
> 0,

where the second equality comes from h(x̄; a, b, v) = 0. The inequality is equivalent

to (7) in the article. By continuity of hb, h(x̄; a, · , v) is strictly increasing over a

neighborhood of b. This implies that there exists b′ ∈ [µ− s, b) with b′ > v such that

h(x̄; a, b′, v) < 0. By continuity of h, there exists v′ ∈ (v, b′) such that h(x̄; a, b′, v′) ≤

0. By Claim A.3, we know h(x; a, b′, v′) ≤ h(x; a, b, v) for all x ∈ [b, x̄], which in turn

implies ca,b′,v′ ≤ ca,b,v.

Proof of Proposition 4. First, consider the case v < a. A careful examination of the

proof of Proposition 1 reveals that h(x; 0, µ − s, v) < cG(x) for all x ∈ [µ − s, 1].

By uniform continuity, there exists v′ > v such that h(x; 0, µ − s, v′) ≤ cG(x) for all

x ∈ [µ− s, 1]. Therefore, c0,µ−s,v′ ≤ cG, implying that G is never consumer-optimal.

Next, consider the case a ≤ v < b − b−a
µ−as. By Proposition 1, we know ca,b,v ≤ cG.

By Claim E.1, we know that there exist b′ ∈ [µ − s, b) and v′ ∈ (v, b′) such that

ca,b′,v′ ≤ cG. Thus, G is never consumer-optimal.

Suppose now that π ≥ s, or equivalently µ−s−a
b−a (b − v) ≥ s. We then know

µ−a
b−a (b− v) > s, which is equivalent to (7).
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Appendix F Consumers’ mixed strategy

In this section, we explain why restricting attention to the consumers’ strategies in

which they purchase with probability one whenever they are indifferent is without

loss of generality.

Formally, consider a signal distribution G. An equilibrium in which consumers

also mix can be characterized by a triple (σ, η, v), where σ is the firms’ mixed strategy

over equilibrium signal cutoffs and v is the equilibrium consumer surplus, as in Section

5. The new component is function η : [v, 1] → [0, 1]. It summarizes the consumers’

mixed behavior in equilibrium when they are indifferent. For every x ∈ [v, 1], η(x) is

the probability that consumers purchase when they receive the price offer p = x− v

and signal x. This is the situation in which the consumers are indifferent between

accepting and rejecting. Note that under this price, they do not mix if the realized

signal is strictly lower or higher than x. A special example of η is that η ≡ 1. This η

exactly corresponds to the strategy that consumers always purchase with probability

one whenever they are indifferent. Such a triple (σ, η, v) is an equilibrium if (9) (in

the article) is satisfied and, for all b ∈ supp(σ),

− (b− v)[(c′G(b−)− c′G(b+))η(b) + c′G(b+)]

≥− (x− v)[(c′G(x−)− c′G(x+))η(x) + c′G(x+)], ∀x ∈ [v, 1]. (F.1)

Some explanations are in order. First, consumers are willing to mix in equilibrium

only when they are indifferent between purchasing or continuing to search. Hence,

such mixture does not change their search incentives. This is why condition (9) does

not change. Second, consumers’ mixture affects the firms’ demand. If a firm sets signal

cutoff x (equivalently, charges price p = x− v), the demand is (G(x)−G(x−))η(x) +

1 − G(x). Because −c′G(x−) = 1 − G(x−) as before, and because −c′G(x+) = 1 −

G(x), we can express this demand as−[(c′G(x−)− c′G(x+))η(x) + c′G(x+)]. Therefore,
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condition (F.1) is simply firms’ pricing incentive after accommodating the consumers’

mixture. Note that if η ≡ 1, (F.1) boils down to (10) (in the article). In this case,

(σ, η, v) is just the equilibrium (σ, v) in the sense that we considered in Section 5.

The following claim shows that even if η 6≡ 1, condition (F.1) still implies (10).

This means that if (σ, η, v) is an equilibrium, then (σ, v) must be an equilibrium in

the sense that we considered in Section 5. Consequently, it proves that restricting to

those equilibria in which the consumers always purchase with probability one when

they are indifferent entails no loss of generality.

Claim F.1. Consider b ∈ supp(σ). If condition (F.1) is satisfied, so is condition

(10).

Proof. First, we show that if b is an atom of G, then η(b) = 1. Suppose, by con-

tradiction, η(b) < 1. When b is an atom, we know 1 − G(x) ≥ 1 − G(b−) =

(1 − G(b)) + (G(b) − G(b−)) = (1 − G(b)) + η(b)(G(b) − G(b−)) + ε, where ε =

(1 − η(b))(G(b) − G(b−)) > 0, for all x < b. That is, the demand for cutoff x < b

is greater than that for cutoff b by at least ε > 0. When x is sufficiently close to b,

the profit from cutoff x must be strictly higher than that from cutoff b. This simply

means that (F.1) is violated, a contradiction. Therefore, we must have η(b) = 1.

The above analysis implies −(b − v)[(c′G(b−)− c′G(b+))η(b) + c′G(b+)] = −(b −

v)c′G(b−) if b is an atom. But notice that this equation automatically holds if b is

not an atom, as in this case c′G(b−) = c′G(b+). Therefore, the left-hand side of (F.1)

is simply −(b− v)c′G(b−), regardless of whether b is an atom or not. But then (F.1)

implies −(b−v)c′G(b−) ≥ −(x−v)c′G(x−) if x ∈ [v, 1] is not an atom of G. If x ∈ [v, 1]

is an atom, pick a sequence {xn} such that xn ↑ x and xn is not an atom of G for

all n. Because −(b− v)c′G(b−) ≥ −(xn − v)c′G(xn−) for all n and x̃ 7→ c′G(x̃−) is left

continuous, we know −(b− v)c′G(b−) ≥ −(x− v)c′G(x−), completing the proof.
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Appendix G Proof of Proposition 6

Proof of Proposition 6. Consider (11) (in the article) as a two-stage optimization

problem: choosing v in the first stage and c1 in the second stage. Given any

v ∈ [0, v∗(s)], the second stage optimization is

max
c1∈CF

c1(b1)

∃b1 s.t. − (b1 − v)c′1(b1−) ≥ −(x− v)c′1(x−), ∀x ∈ [v, 1].

It can be equivalently formulated as

max s′

∃c1 ∈ CF and b1 such that c1(b1) = s′, and

−(b1 − v)c′1(b1−) ≥ −(x− v)c′1(x−), ∀x ∈ [v, 1],

or equivalently

max s′

s.t. v ≤ v∗(s′).

(G.1)

Because v∗ is strictly decreasing, the solution to (G.1) is obviously v∗−1(v) ∈ [s, s∗],

where v∗−1 is the inverse of v∗ function.9

Now consider the first stage choice of v. The optimization problem can be written

as

max
v∈[0, v∗(s)]

v − s+ v∗−1(v),

or equivalently

max
s′∈[s, s∗]

v∗(s′)− s+ s′. (G.2)

Applying a similar argument as the proof for Claim C.1, we can show that v∗(
¯
s) ≥

9The range of v∗ over [s, s∗] is [v∗(s∗), v∗(s)]. Because it is possible that v∗(s∗) > 0, we define
v∗−1(v) = s∗ if v ∈ [0, v∗(s∗)).

29



v∗(s̄) +
s̄−

¯
s

ρ∗(s̄)
for all

¯
s < s̄. This implies that v∗(s) + s is decreasing. Therefore, s′ = s

is a solution to (G.2), which implies the value of (G.2) and hence the value of (11) is

simply v∗(s). Clearly, it can be achieved by choosing v = v∗ and c1 as the symmetric

consumer-optimal signal distribution.
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